Existence of solutions for the Dirichlet problem with superlinear nonlinearities
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 515-528
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish the existence of nontrivial solutions to \[\frac{\mathrm d}{{\mathrm d}t}L_{x^{\prime }}(t,x^{\prime }(t))+V_{x} (t,x(t))=0,\quad x(0)=0=x(T),\] with $V_x$ superlinear in $x$.
In this paper we establish the existence of nontrivial solutions to \[\frac{\mathrm d}{{\mathrm d}t}L_{x^{\prime }}(t,x^{\prime }(t))+V_{x} (t,x(t))=0,\quad x(0)=0=x(T),\] with $V_x$ superlinear in $x$.
Classification : 34B15, 47J30, 49J40
Keywords: nonlinear Dirichlet problem; nontrivial solution; duality method; superlinear nonlinearity
@article{CMJ_2003_53_3_a1,
     author = {Nowakowski, Andrzej and Rogowski, Andrzej},
     title = {Existence of solutions for the {Dirichlet} problem with superlinear nonlinearities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {515--528},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000049},
     zbl = {1080.34516},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a1/}
}
TY  - JOUR
AU  - Nowakowski, Andrzej
AU  - Rogowski, Andrzej
TI  - Existence of solutions for the Dirichlet problem with superlinear nonlinearities
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 515
EP  - 528
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a1/
LA  - en
ID  - CMJ_2003_53_3_a1
ER  - 
%0 Journal Article
%A Nowakowski, Andrzej
%A Rogowski, Andrzej
%T Existence of solutions for the Dirichlet problem with superlinear nonlinearities
%J Czechoslovak Mathematical Journal
%D 2003
%P 515-528
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a1/
%G en
%F CMJ_2003_53_3_a1
Nowakowski, Andrzej; Rogowski, Andrzej. Existence of solutions for the Dirichlet problem with superlinear nonlinearities. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 515-528. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a1/

[1] A.  Capietto, J.  Mawhin and F.  Zanolin: Boundary value problems for forced superlinear second order ordinary differential equations. Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XII, Pitman Res. Notes ser., 302, 1994, pp. 55–64. | MR

[2] A.  Castro, J.  Cossio and J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain  J. Math. 27 (1997), 1041–1053. | DOI | MR

[3] S. K. Ingram: Continuous dependence on parameters and boundary value problems. Pacific J.  Math. 41 (1972), 395–408. | DOI | MR

[4] G.  Klaasen: Dependence of solutions on boundary conditions for second order ordinary differential equations. J.  Differential Equations 7 (1970), 24–33. | DOI | MR | Zbl

[5] L.  Lassoued: Periodic solutions of a second order superquadratic systems with a change of sign in the potential. J.  Differential Equations 93 (1991), 1–18. | DOI | MR

[6] J.  Mawhin: Problèmes de Dirichlet Variationnels Non Linéares. Les Presses de l’Université de Montréal, 1987. | MR

[7] A.  Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations. J.  Differential Equations 97 (1992), 174–188. | DOI | MR | Zbl

[8] P. H.  Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations. AMS, Providence, 1986. | MR

[9] D.  O’Regan: Singular Dirichlet boundary value problems. I.  Superlinear and nonresonant case. Nonlinear Anal. 29 (1997), 221–245. | DOI | MR