On the instability of linear nonautonomous delay systems
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 497-514
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The unstable properties of the linear nonautonomous delay system $x^{\prime }(t)=A(t)x(t)+B(t)x(t-r(t))$, with nonconstant delay $r(t)$, are studied. It is assumed that the linear system $y^{\prime }(t)=(A(t)+B(t))y(t)$ is unstable, the instability being characterized by a nonstable manifold defined from a dichotomy to this linear system. The delay $r(t)$ is assumed to be continuous and bounded. Two kinds of results are given, those concerning conditions that do not include the properties of the delay function $r(t)$ and the results depending on the asymptotic properties of the delay function.
The unstable properties of the linear nonautonomous delay system $x^{\prime }(t)=A(t)x(t)+B(t)x(t-r(t))$, with nonconstant delay $r(t)$, are studied. It is assumed that the linear system $y^{\prime }(t)=(A(t)+B(t))y(t)$ is unstable, the instability being characterized by a nonstable manifold defined from a dichotomy to this linear system. The delay $r(t)$ is assumed to be continuous and bounded. Two kinds of results are given, those concerning conditions that do not include the properties of the delay function $r(t)$ and the results depending on the asymptotic properties of the delay function.
Classification : 34D05, 34D09, 34D20, 34K06, 34K20
Keywords: Liapounov instability; $h$-instability; instability of delay equations; nonconstant delays
@article{CMJ_2003_53_3_a0,
     author = {Naulin, Ra\'ul},
     title = {On the instability of linear nonautonomous delay systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {497--514},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000048},
     zbl = {1080.34543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/}
}
TY  - JOUR
AU  - Naulin, Raúl
TI  - On the instability of linear nonautonomous delay systems
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 497
EP  - 514
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/
LA  - en
ID  - CMJ_2003_53_3_a0
ER  - 
%0 Journal Article
%A Naulin, Raúl
%T On the instability of linear nonautonomous delay systems
%J Czechoslovak Mathematical Journal
%D 2003
%P 497-514
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/
%G en
%F CMJ_2003_53_3_a0
Naulin, Raúl. On the instability of linear nonautonomous delay systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 497-514. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/

[1] E. A.  Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGill-Hill, New York, 1975.

[2] K. L. Cooke: Functional differential equations close to differential equations. Bull. Amer. Math. Soc. 72 (1966), 285–288. | DOI | MR | Zbl

[3] W. A.  Coppel: On the stability of ordinary differential equations. J.  London Math. Soc. 39 (1964), 255–260. | DOI | MR | Zbl

[4] W. A. Coppel: Dichotomies in Stability Theory. Lecture Notes in Mathematics Vol.  629. Springer Verlag, Berlin, 1978. | MR

[5] L. E.  Elsgoltz and S. B. Norkin: Introduction to the Theory of Differential Equations with Deviating Arguments. Nauka, Moscow, 1971. (Russian) | MR

[6] J.  Gallardo and M. Pinto: Asymptotic integration of nonautonomous delay-differential systems. J.  Math. Anal. Appl. 199 (1996), 654–675. | DOI | MR

[7] K.  Gopalsamy: Stability and Oscillations in Delay Differential Equations of Populations Dynamics. Kluwer, Dordrecht, 1992. | MR

[8] I.  Győri and M. Pituk: Stability criteria for linear delay differential equations. Differential Integral Equations 10 (1997), 841–852. | MR

[9] N.  Rouche, P. Habets and M. Laloy: Stability Theory by Liapounov’s Second Method. App. Math. Sciences  22. Springer, Berlin, 1977. | DOI | MR

[10] J. K. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York, 1977. | MR | Zbl

[11] J. K.  Hale and S. M.  Verduyn Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. | MR

[12] R. Naulin: Instability of nonautonomous differential systems. Differential Equations Dynam. Systems 6 (1998), 363–376. | MR | Zbl

[13] R.  Naulin: Weak dichotomies and asymptotic integration of nonlinear differential systems. Nonlinear Studies 5 (1998), 201–218. | MR | Zbl

[14] R.  Naulin: Functional analytic characterization of a class of dichotomies. Unpublished work (1999).

[15] R.  Naulin and M. Pinto: Roughness of $(h,k)$-dichotomies. J. Differential Equations 118 (1995), 20–35. | DOI | MR

[16] R.  Naulin and M. Pinto: Admissible perturbations of exponential dichotomy roughness. J. Nonlinear Anal. TMA 31 (1998), 559–571. | MR

[17] R. Naulin and M. Pinto: Projections for dichotomies in linear differential equations. Appl. Anal. 69 (1998), 239–255. | DOI | MR

[18] M.  Pinto: Non autonomous semilinear differential systems: Asymptotic behavior and stable manifolds. Preprint (1997).

[19] M.  Pinto: Dichotomy and asymptotic integration. Contributions USACH (1992), 13–22.