Keywords: Liapounov instability; $h$-instability; instability of delay equations; nonconstant delays
@article{CMJ_2003_53_3_a0,
author = {Naulin, Ra\'ul},
title = {On the instability of linear nonautonomous delay systems},
journal = {Czechoslovak Mathematical Journal},
pages = {497--514},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000048},
zbl = {1080.34543},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/}
}
Naulin, Raúl. On the instability of linear nonautonomous delay systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 497-514. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a0/
[1] E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations. McGill-Hill, New York, 1975.
[2] K. L. Cooke: Functional differential equations close to differential equations. Bull. Amer. Math. Soc. 72 (1966), 285–288. | DOI | MR | Zbl
[3] W. A. Coppel: On the stability of ordinary differential equations. J. London Math. Soc. 39 (1964), 255–260. | DOI | MR | Zbl
[4] W. A. Coppel: Dichotomies in Stability Theory. Lecture Notes in Mathematics Vol. 629. Springer Verlag, Berlin, 1978. | MR
[5] L. E. Elsgoltz and S. B. Norkin: Introduction to the Theory of Differential Equations with Deviating Arguments. Nauka, Moscow, 1971. (Russian) | MR
[6] J. Gallardo and M. Pinto: Asymptotic integration of nonautonomous delay-differential systems. J. Math. Anal. Appl. 199 (1996), 654–675. | DOI | MR
[7] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Populations Dynamics. Kluwer, Dordrecht, 1992. | MR
[8] I. Győri and M. Pituk: Stability criteria for linear delay differential equations. Differential Integral Equations 10 (1997), 841–852. | MR
[9] N. Rouche, P. Habets and M. Laloy: Stability Theory by Liapounov’s Second Method. App. Math. Sciences 22. Springer, Berlin, 1977. | DOI | MR
[10] J. K. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York, 1977. | MR | Zbl
[11] J. K. Hale and S. M. Verduyn Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. | MR
[12] R. Naulin: Instability of nonautonomous differential systems. Differential Equations Dynam. Systems 6 (1998), 363–376. | MR | Zbl
[13] R. Naulin: Weak dichotomies and asymptotic integration of nonlinear differential systems. Nonlinear Studies 5 (1998), 201–218. | MR | Zbl
[14] R. Naulin: Functional analytic characterization of a class of dichotomies. Unpublished work (1999).
[15] R. Naulin and M. Pinto: Roughness of $(h,k)$-dichotomies. J. Differential Equations 118 (1995), 20–35. | DOI | MR
[16] R. Naulin and M. Pinto: Admissible perturbations of exponential dichotomy roughness. J. Nonlinear Anal. TMA 31 (1998), 559–571. | MR
[17] R. Naulin and M. Pinto: Projections for dichotomies in linear differential equations. Appl. Anal. 69 (1998), 239–255. | DOI | MR
[18] M. Pinto: Non autonomous semilinear differential systems: Asymptotic behavior and stable manifolds. Preprint (1997).
[19] M. Pinto: Dichotomy and asymptotic integration. Contributions USACH (1992), 13–22.