Keywords: ordered set; jump (setup) number; lexicographic sum; jump-critical
@article{CMJ_2003_53_2_a9,
author = {Jung, Hyung Chan and Lee, Jeh Gwon},
title = {On the jump number of lexicographic sums of ordered sets},
journal = {Czechoslovak Mathematical Journal},
pages = {343--349},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983456},
zbl = {1024.06001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a9/}
}
Jung, Hyung Chan; Lee, Jeh Gwon. On the jump number of lexicographic sums of ordered sets. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 343-349. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a9/
[1] M. Chein and M. Habib: The jump number of dags and posets: an introduction. Ann. Discrete Math. 9 (1980), 189–194. | DOI | MR
[2] R. P. Dilworth: A decomposition theorem for partially ordered sets. Ann. Math. 51 (1950), 161–166. | DOI | MR | Zbl
[3] M. H. ElZahar and I. Rival: Examples of jump-critical ordered sets. SIAM J. Alg. Disc. Math. 6 (1985), 713–720. | DOI | MR
[4] M. H. ElZahar and J. H. Schmerl: On the size of jump-critical ordered sets. Order 1 (1984), 3–5. | DOI | MR
[5] M. Habib: Comparability invariants. Ann. Discrete Math. 23 (1984), 371–386. | MR | Zbl
[6] M. Habib and R. H. Möhring: On some complexity properties of $N$-free posets with bounded decomposition diameter. Discrete Math. 63 (1987), 157–182. | DOI | MR
[7] H. C. Jung: On the products of some posets: jump number, greediness. Ars Combin. 40 (1995), 109–120. | MR
[8] E. Szpilrajn: Sur l’extension de l’ordre partiel. Fund. Math. 16 (1930), 386–389. | DOI