Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
Classification : 11B75, 37B05, 37B20, 54C60, 54H20
Keywords: flow; Stone-Čech compactification; Hindman’s theorem
@article{CMJ_2003_53_2_a8,
     author = {Ball, Richard N. and Hagler, James N.},
     title = {Flow compactifications of nondiscrete monoids, idempotents and {Hindman{\textquoteright}s} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--342},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983455},
     zbl = {1026.54043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/}
}
TY  - JOUR
AU  - Ball, Richard N.
AU  - Hagler, James N.
TI  - Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 319
EP  - 342
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/
LA  - en
ID  - CMJ_2003_53_2_a8
ER  - 
%0 Journal Article
%A Ball, Richard N.
%A Hagler, James N.
%T Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
%J Czechoslovak Mathematical Journal
%D 2003
%P 319-342
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/
%G en
%F CMJ_2003_53_2_a8
Ball, Richard N.; Hagler, James N. Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/

[1] R. N. Ball and J. N.  Hagler: Actions on archimedean lattice-ordered groups with strong unit. Ordered Algebraic Structures, W. C.  Holland, J.  Martinez (eds.), Kluwer Academic Publishers, 1997, pp. 81–121. | MR

[2] R. N. Ball and J. N.  Hagler: The Gleason cover of a flow. General Topology and Applications. Tenth Summer Conference at Amsterdam, E. Coplakova, K. P.  Hart (eds.), Annals of the New York Academy of Sciences, Vol.788, 1996. | MR

[3] R. N.  Ball and J. N.  Hagler: Real valued functions on flows. In preparation.

[4] A. Blass: Ultrafilters: where topological dynamics = algebra = combinatorics. Topology Proceedings, Vol. 18 (1993), 33–56. | MR | Zbl

[5] W. W.  Comfort: Ultrafilters—some old and some new results. Bull. Amer. Math. Soc. 83 (1977), 417–455. | DOI | MR

[6] L. Gillman and M.  Jerison: Rings of Continuous Functions. Van Nostrand, 1960. | MR

[7] R. L. Graham, B. L. Rothschild and J. H. Spencer: Ramsey Theory. Wiley, 1980. | MR

[8] H.  Herrlich and G. E. Strecker: Category Theory. Allyn and Bacon, Boston, 1973. | MR

[9] N.  Hindman: Finite sums from sequences within cells of a partition of  $N$. J.  Combin. Theory  (A), 17 (1974), 1–11. | DOI | MR | Zbl

[10] N.  Hindman: Ultrafilters and combinatorial number theory. Number Theory Carbondale 1979. Lecture Notes in Mathematics 751, M.  Nathanson (ed.), Springer Verlag, 1979, pp. 119–184. | MR

[11] M. Megrelishvili: A Tychonoff $G$-space which has no compact $G$-extensions and $G$-linearizations. Russian Math. Surveys 43 (1998), 145–6.

[12] K.  Namakura: On bicompact semgroups. Math. J.  Okayama University 1 (1952), 99–108. | MR

[13] J. de Vries: Topological Transformation Groups. (A Categorical Approach). Mathematical Centre Tracts 65, Amsterdam, 1975.

[14] J. de Vries: Elements of Topological Dynamics, Mathematics and Its Applications Vol. 257. Kluwer Academic Publishing, Dordrecht, 1993. | MR

[15] J.  de Vries: On the existence of  $G$-compactifications. Bull. Acad. Polonaise des Sciences 26 (1978), 275–280. | MR | Zbl