Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
Classification :
11B75, 37B05, 37B20, 54C60, 54H20
Keywords: flow; Stone-Čech compactification; Hindman’s theorem
Keywords: flow; Stone-Čech compactification; Hindman’s theorem
@article{CMJ_2003_53_2_a8,
author = {Ball, Richard N. and Hagler, James N.},
title = {Flow compactifications of nondiscrete monoids, idempotents and {Hindman{\textquoteright}s} theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {319--342},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983455},
zbl = {1026.54043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/}
}
TY - JOUR AU - Ball, Richard N. AU - Hagler, James N. TI - Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem JO - Czechoslovak Mathematical Journal PY - 2003 SP - 319 EP - 342 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/ LA - en ID - CMJ_2003_53_2_a8 ER -
Ball, Richard N.; Hagler, James N. Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a8/