Keywords: $MV$-algebra; abelian lattice ordered group; free generators
@article{CMJ_2003_53_2_a7,
author = {Jakub{\'\i}k, J\'an},
title = {On free $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {311--317},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983454},
zbl = {1024.06004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a7/}
}
Jakubík, Ján. On free $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 311-317. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a7/
[1] G. Birkhoff: Lattice Theory. Providence, 1967. | MR | Zbl
[2] R. Cignoli, I M. I. d’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia logica library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[4] D. Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263. | MR | Zbl
[5] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[6] R. McNaughton: A theorem about infinite valued sentential logic. J. Symbolic Logic 16 (1951), 1–13. | DOI | MR | Zbl
[7] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR
[8] E. C. Weinberg: Free lattice ordered abelian groups. Math. Ann. 151 (1963), 187–199. | DOI | MR | Zbl
[9] E. C. Weinberg: Free lattice ordered abelian groups, II. Math. Ann. 159 (1965), 217–222. | DOI | MR | Zbl