Equivalence bimodule between non-commutative tori
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 289-294 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule.
The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule.
Classification : 46L05, 46L87, 46L89, 55R15
Keywords: Morita equivalent; twisted group $C^*$-algebra; crossed product
@article{CMJ_2003_53_2_a5,
     author = {Oh, Sei-Qwon and Park, Chun-Gil},
     title = {Equivalence bimodule between non-commutative tori},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--294},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983452},
     zbl = {1028.46102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/}
}
TY  - JOUR
AU  - Oh, Sei-Qwon
AU  - Park, Chun-Gil
TI  - Equivalence bimodule between non-commutative tori
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 289
EP  - 294
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/
LA  - en
ID  - CMJ_2003_53_2_a5
ER  - 
%0 Journal Article
%A Oh, Sei-Qwon
%A Park, Chun-Gil
%T Equivalence bimodule between non-commutative tori
%J Czechoslovak Mathematical Journal
%D 2003
%P 289-294
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/
%G en
%F CMJ_2003_53_2_a5
Oh, Sei-Qwon; Park, Chun-Gil. Equivalence bimodule between non-commutative tori. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 289-294. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/

[1] L.  Baggett and A.  Kleppner: Multiplier representations of abelian groups. J.  Funct. Anal. 14 (1973), 299–324. | DOI | MR

[2] M.  Brabanter: The classification of rational rotation $C^*$-algebras. Arch. Math. 43 (1984), 79–83. | DOI | MR

[3] L.  Brown, P.  Green and M.  Rieffel: Stable isomorphism and strong Morita equivalence of $C^*$-algebras. Pacific J.  Math. 71 (1977), 349–363. | DOI | MR

[4] S.  Disney and I.  Raeburn: Homogeneous $C^*$-algebras whose spectra are tori. J.  Austral. Math. Soc. (Series A) 38 (1985), 9–39. | DOI | MR

[5] R. S.  Doran and J. M. G.  Fell: Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles. Academic Press, San Diego, 1988.

[6] G. A.  Elliott: On the $K$-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group. In: Operator Algebras and Group Representations, Vol.  1, Pitman, London, 1984, pp. 157–184. | MR | Zbl

[7] P.  Green: The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191–250. | DOI | MR | Zbl

[8] D. Poguntke: Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups. Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. | DOI | MR | Zbl

[9] D.  Poguntke: The structure of twisted convolution $C^*$-algebras on abelian groups. J.  Operator Theory 38 (1997), 3–18. | MR | Zbl

[10] M. Rieffel: Morita equivalence for operator algebras. Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V.  Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. | MR | Zbl