Keywords: Morita equivalent; twisted group $C^*$-algebra; crossed product
@article{CMJ_2003_53_2_a5,
author = {Oh, Sei-Qwon and Park, Chun-Gil},
title = {Equivalence bimodule between non-commutative tori},
journal = {Czechoslovak Mathematical Journal},
pages = {289--294},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983452},
zbl = {1028.46102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/}
}
Oh, Sei-Qwon; Park, Chun-Gil. Equivalence bimodule between non-commutative tori. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 289-294. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a5/
[1] L. Baggett and A. Kleppner: Multiplier representations of abelian groups. J. Funct. Anal. 14 (1973), 299–324. | DOI | MR
[2] M. Brabanter: The classification of rational rotation $C^*$-algebras. Arch. Math. 43 (1984), 79–83. | DOI | MR
[3] L. Brown, P. Green and M. Rieffel: Stable isomorphism and strong Morita equivalence of $C^*$-algebras. Pacific J. Math. 71 (1977), 349–363. | DOI | MR
[4] S. Disney and I. Raeburn: Homogeneous $C^*$-algebras whose spectra are tori. J. Austral. Math. Soc. (Series A) 38 (1985), 9–39. | DOI | MR
[5] R. S. Doran and J. M. G. Fell: Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles. Academic Press, San Diego, 1988.
[6] G. A. Elliott: On the $K$-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group. In: Operator Algebras and Group Representations, Vol. 1, Pitman, London, 1984, pp. 157–184. | MR | Zbl
[7] P. Green: The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191–250. | DOI | MR | Zbl
[8] D. Poguntke: Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups. Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. | DOI | MR | Zbl
[9] D. Poguntke: The structure of twisted convolution $C^*$-algebras on abelian groups. J. Operator Theory 38 (1997), 3–18. | MR | Zbl
[10] M. Rieffel: Morita equivalence for operator algebras. Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V. Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. | MR | Zbl