Modules with the direct summand sum property
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 277-287
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present work gives some characterizations of $R$-modules with the direct summand sum property (in short DSSP), that is of those $R$-modules for which the sum of any two direct summands, so the submodule generated by their union, is a direct summand, too. General results and results concerning certain classes of $R$-modules (injective or projective) with this property, over several rings, are presented.
The present work gives some characterizations of $R$-modules with the direct summand sum property (in short DSSP), that is of those $R$-modules for which the sum of any two direct summands, so the submodule generated by their union, is a direct summand, too. General results and results concerning certain classes of $R$-modules (injective or projective) with this property, over several rings, are presented.
Classification : 16D10, 16D40, 16D50, 16D60, 16D70
Keywords: modules; direct summands; sum property; Artinian rings
@article{CMJ_2003_53_2_a4,
     author = {V\u{a}lcan, Dumitru},
     title = {Modules with the direct summand sum property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {277--287},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983451},
     zbl = {1027.16005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/}
}
TY  - JOUR
AU  - Vălcan, Dumitru
TI  - Modules with the direct summand sum property
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 277
EP  - 287
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/
LA  - en
ID  - CMJ_2003_53_2_a4
ER  - 
%0 Journal Article
%A Vălcan, Dumitru
%T Modules with the direct summand sum property
%J Czechoslovak Mathematical Journal
%D 2003
%P 277-287
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/
%G en
%F CMJ_2003_53_2_a4
Vălcan, Dumitru. Modules with the direct summand sum property. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 277-287. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/

[1] F. W. Anderson and K. R.  Fuller: Rings and Categories of Modules. Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR

[2] D. M. Arnold and J. Hausen: A characterization of modules with the summand intersection property. Comm. Algebra 18 (1990), 519–528. | DOI | MR

[3] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Math. 49. Springer-Verlag, Berlin-Heidelberg-New York, 1967. | MR

[4] L.  Fuchs: Infinite Abelian Groups, vol. I–II. Pure Appl. Math. 36. Academic Press, 1970–1973. | MR

[5] J. Hausen: Modules with the summand intersection property. Comm. Algebra 17 (1989), 135–148. | DOI | MR | Zbl

[6] I.  Kaplansky: Infinite Abelian Groups. Univ. of Michigan Press, Ann Arbor, Michigan, 1954, 1969. | MR

[7] I. Purdea and G. Pic: Treatise of Modern Algebra, vol. I. Editura Academiei R.S.R., Bucureşti, 1977. (Romanian) | MR

[8] I.  Purdea: Treatise of Modern Algebra, vol. II. Editura Academiei R.S.R., Bucureşti, 1982. (Romanian) | MR

[9] J. J. Rotman: Notes on Homological Algebra. Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, 1970. | MR

[10] D. W. Sharpe and P.  Vámos: Injective Modules. Cambridge University Press, 1972. | MR

[11] D.  Vălcan: Injective modules with the direct summand intersection property. Sci. Bull. of Moldavian Academy of Sciences, Seria Mathematica 31 (1999), 39–50. | MR

[12] G. V.  Wilson: Modules with the summand intersection property. Comm. Algebra 14 (1986), 21–38. | DOI | MR | Zbl

[13] X. H. Zheng: Characterizations of Noetherian and hereditary rings. Proc. Amer. Math. Soc. 93 (1985), 414–416. | DOI | MR | Zbl