Keywords: modules; direct summands; sum property; Artinian rings
@article{CMJ_2003_53_2_a4,
author = {V\u{a}lcan, Dumitru},
title = {Modules with the direct summand sum property},
journal = {Czechoslovak Mathematical Journal},
pages = {277--287},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983451},
zbl = {1027.16005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/}
}
Vălcan, Dumitru. Modules with the direct summand sum property. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 277-287. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a4/
[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR
[2] D. M. Arnold and J. Hausen: A characterization of modules with the summand intersection property. Comm. Algebra 18 (1990), 519–528. | DOI | MR
[3] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Math. 49. Springer-Verlag, Berlin-Heidelberg-New York, 1967. | MR
[4] L. Fuchs: Infinite Abelian Groups, vol. I–II. Pure Appl. Math. 36. Academic Press, 1970–1973. | MR
[5] J. Hausen: Modules with the summand intersection property. Comm. Algebra 17 (1989), 135–148. | DOI | MR | Zbl
[6] I. Kaplansky: Infinite Abelian Groups. Univ. of Michigan Press, Ann Arbor, Michigan, 1954, 1969. | MR
[7] I. Purdea and G. Pic: Treatise of Modern Algebra, vol. I. Editura Academiei R.S.R., Bucureşti, 1977. (Romanian) | MR
[8] I. Purdea: Treatise of Modern Algebra, vol. II. Editura Academiei R.S.R., Bucureşti, 1982. (Romanian) | MR
[9] J. J. Rotman: Notes on Homological Algebra. Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, 1970. | MR
[10] D. W. Sharpe and P. Vámos: Injective Modules. Cambridge University Press, 1972. | MR
[11] D. Vălcan: Injective modules with the direct summand intersection property. Sci. Bull. of Moldavian Academy of Sciences, Seria Mathematica 31 (1999), 39–50. | MR
[12] G. V. Wilson: Modules with the summand intersection property. Comm. Algebra 14 (1986), 21–38. | DOI | MR | Zbl
[13] X. H. Zheng: Characterizations of Noetherian and hereditary rings. Proc. Amer. Math. Soc. 93 (1985), 414–416. | DOI | MR | Zbl