Keywords: metric spaces; $g$-metrizable spaces; 1-sequence-covering mappings; $\sigma $-mappings; quotient mappings
@article{CMJ_2003_53_2_a21,
author = {Li, Jinjin},
title = {A note on $g$-metrizable spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {491--495},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983468},
zbl = {1026.54026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a21/}
}
Li, Jinjin. A note on $g$-metrizable spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 491-495. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a21/
[1] P. Alexandroff: On some results concerning topological spaces and their continuous mappings. In: Proc. Symp. Gen. Top. (Prague, 1961), 1961, pp. 41–54. | MR
[2] F. Siwiec: On defining a space by a weak base. Pacific J. Math. 52 (1974), 233–245. | DOI | MR | Zbl
[3] Shou Lin: On sequence-covering $s$-mappings. Adv. Math. (China) 25 (1996), 548–551. | MR
[4] Shou Lin: $\sigma $-mappings and Alexandroff’s problems. (to appear).
[5] J. R. Boone and F. Siwiec: Sequentially quotient mappings. Czechoslovak Math. J. 26 (1976), 174–182. | MR
[6] R. Engelking: General Topology. Polish Scientific Publishers, Warszawa, 1977. | MR | Zbl
[7] A. V. Arhangel’skii: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162. | MR
[8] Y. Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability. Proc. Amer. Math. Soc. 112 (1991), 283–290. | MR | Zbl