Almost-flat modules
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 479-489
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present general properties for almost-flat modules and we prove that a self-small right module is almost flat as a left module over its endomorphism ring if and only if the class of $g$-static modules is closed under the kernels.
We present general properties for almost-flat modules and we prove that a self-small right module is almost flat as a left module over its endomorphism ring if and only if the class of $g$-static modules is closed under the kernels.
Classification : 16D40, 16E30, 20K40
Keywords: almost-flat module; self-small module; endomorphism ring
@article{CMJ_2003_53_2_a20,
     author = {Breaz, Simion},
     title = {Almost-flat modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {479--489},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983467},
     zbl = {1027.16001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a20/}
}
TY  - JOUR
AU  - Breaz, Simion
TI  - Almost-flat modules
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 479
EP  - 489
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a20/
LA  - en
ID  - CMJ_2003_53_2_a20
ER  - 
%0 Journal Article
%A Breaz, Simion
%T Almost-flat modules
%J Czechoslovak Mathematical Journal
%D 2003
%P 479-489
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a20/
%G en
%F CMJ_2003_53_2_a20
Breaz, Simion. Almost-flat modules. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 479-489. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a20/

[1] U. Albrecht: Endomorphism rings of faithfully flat abelian groups. Res. Math. 17 (1990), 179–201. | DOI | MR | Zbl

[2] U. Albrecht: Endomophism rings, tensor product and Fuchs problem 47. Contemp. Math. 130 (1992), 17–31. | DOI | MR

[3] U. Albrecht and P.  Goeters: Almost flat abelian groups. Rocky Mountain J. Math. 25 (1993), 827–842. | MR

[4] D. M. Arnold and C. E. Murley: Abelian groups  $A$, such that $\mathop {\mathrm Hom}(A,-)$ preserves direct sums of copies of  $A$. Pacific J.  Math. 56 (1975), 7–20. | MR

[5] H. Cartan and S.  Eilenberg: Homological Algebra. Oxford University Press, Oxford, 1956. | MR

[6] F. Richman and E. A.  Walker: Cyclic Ext. Rocky Mountain J. Math. 11 (1981), 611–615. | DOI | MR

[7] B. Stenstrom: Ring of Quotients. An Introduction to Methods of Ring Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR

[8] C. Visonhaler and W.  Wickless: Homological dimensions of completely decomposable groups. Lecture Notes in Pure and Appl. Math. 146 (1993), 247–258. | MR

[9] R.  Wisbauer: Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1986. | MR

[10] R. Wisbauer: Static modules and equivalences. (1998), Preprint. | MR