Invariant metrics on $G$-spaces
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 449-466
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a $G$-space such that the orbit space $X/G$ is metrizable. Suppose a family of slices is given at each point of $X$. We study a construction which associates, under some conditions on the family of slices, with any metric on $X/G$ an invariant metric on $X$. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
Let $X$ be a $G$-space such that the orbit space $X/G$ is metrizable. Suppose a family of slices is given at each point of $X$. We study a construction which associates, under some conditions on the family of slices, with any metric on $X/G$ an invariant metric on $X$. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
Classification : 54E35, 54H15, 57S30
Keywords: G-space; invariant metric; slice
@article{CMJ_2003_53_2_a18,
     author = {Hajduk, Bogus{\l}aw and Walczak, Rafa{\l}},
     title = {Invariant metrics on $G$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {449--466},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983465},
     zbl = {1075.54506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a18/}
}
TY  - JOUR
AU  - Hajduk, Bogusław
AU  - Walczak, Rafał
TI  - Invariant metrics on $G$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 449
EP  - 466
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a18/
LA  - en
ID  - CMJ_2003_53_2_a18
ER  - 
%0 Journal Article
%A Hajduk, Bogusław
%A Walczak, Rafał
%T Invariant metrics on $G$-spaces
%J Czechoslovak Mathematical Journal
%D 2003
%P 449-466
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a18/
%G en
%F CMJ_2003_53_2_a18
Hajduk, Bogusław; Walczak, Rafał. Invariant metrics on $G$-spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 449-466. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a18/

[1] D. W.  Alekseevski: On perfect actions of groups. Uspiekhi Math. Nauk 34 (1979), 219–220. (Russian) | MR

[2] G.  Birkhoff: A note on topological groups. Compositio Math. 3 (1936), 427–430. | MR | Zbl

[3] R. Engelking: General Topology. PWN, Warszawa, 1977. | MR | Zbl

[4] S.  Kakutani: Über die Metrization der topologischen Gruppen. Proc. Imp. Acad. Japan 12 (1936), 82–84. | DOI | MR

[5] J. L. Koszul: Lectures on Groups of Transformation. Tate Institute, Bombay, 1965. | MR

[6] D. Montgomery and L. Zippin: Topological Transformation Groups. Interscience, London, New York, 1995. | MR

[7] M. H.  Newman: A theorem on periodic transformations of spaces. Quart. J. Math. 2 (1931), 1–8. | DOI | Zbl

[8] R. S. Palais: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73 (1961), 295–323. | DOI | MR | Zbl

[9] P. A. Smith: Transformations of finite period III. Ann. Math. 42 (1941), 446–458. | DOI | MR