A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 437-447
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Cantor-Bernstein theorem was extended to $\sigma $-complete boolean algebras by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to $\sigma $-complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.
The Cantor-Bernstein theorem was extended to $\sigma $-complete boolean algebras by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to $\sigma $-complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.
Classification : 03G20, 06C15, 06D30, 06D35
Keywords: Cantor-Bernstein theorem; MV-algebra; boolean element of an MV-algebra; partition of unity; direct product decomposition; $\sigma $-complete MV-algebra
@article{CMJ_2003_53_2_a17,
     author = {de Simone, A. and Mundici, D. and Navara, M.},
     title = {A {Cantor-Bernstein} theorem for $\sigma$-complete {MV-algebras}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {437--447},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983464},
     zbl = {1024.06003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/}
}
TY  - JOUR
AU  - de Simone, A.
AU  - Mundici, D.
AU  - Navara, M.
TI  - A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 437
EP  - 447
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/
LA  - en
ID  - CMJ_2003_53_2_a17
ER  - 
%0 Journal Article
%A de Simone, A.
%A Mundici, D.
%A Navara, M.
%T A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 437-447
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/
%G en
%F CMJ_2003_53_2_a17
de Simone, A.; Mundici, D.; Navara, M. A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 437-447. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/

[1] R.  Cignoli and D. Mundici: An invitation to Chang’s MV-algebras. In: Advances in Algebra and Model Theory, M.  Droste, R. Göbel (eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197. | MR

[2] R.  Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol.  7. Kluwer Academic Publishers, Dordrecht, 1999. | MR

[3] W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5 (1957), 205–217. | DOI | MR | Zbl

[4] J. Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49(124) (1999), 517–526. | DOI | MR

[5] S.  Kinoshita: A solution to a problem of Sikorski. Fund. Math. 40 (1953), 39–41. | DOI | MR

[6] A.  Levy: Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979. | MR

[7] D.  Mundici: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. | DOI | MR | Zbl

[8] R.  Sikorski: Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960. | MR | Zbl

[9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144 and 242. | DOI | MR

[10] A.  Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. | MR | Zbl