Keywords: Cantor-Bernstein theorem; MV-algebra; boolean element of an MV-algebra; partition of unity; direct product decomposition; $\sigma $-complete MV-algebra
@article{CMJ_2003_53_2_a17,
author = {de Simone, A. and Mundici, D. and Navara, M.},
title = {A {Cantor-Bernstein} theorem for $\sigma$-complete {MV-algebras}},
journal = {Czechoslovak Mathematical Journal},
pages = {437--447},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983464},
zbl = {1024.06003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/}
}
TY - JOUR AU - de Simone, A. AU - Mundici, D. AU - Navara, M. TI - A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras JO - Czechoslovak Mathematical Journal PY - 2003 SP - 437 EP - 447 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/ LA - en ID - CMJ_2003_53_2_a17 ER -
de Simone, A.; Mundici, D.; Navara, M. A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 437-447. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a17/
[1] R. Cignoli and D. Mundici: An invitation to Chang’s MV-algebras. In: Advances in Algebra and Model Theory, M. Droste, R. Göbel (eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197. | MR
[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol. 7. Kluwer Academic Publishers, Dordrecht, 1999. | MR
[3] W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5 (1957), 205–217. | DOI | MR | Zbl
[4] J. Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49(124) (1999), 517–526. | DOI | MR
[5] S. Kinoshita: A solution to a problem of Sikorski. Fund. Math. 40 (1953), 39–41. | DOI | MR
[6] A. Levy: Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979. | MR
[7] D. Mundici: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR | Zbl
[8] R. Sikorski: Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960. | MR | Zbl
[9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144 and 242. | DOI | MR
[10] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. | MR | Zbl