Constructions over tournaments
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 413-428
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate tournaments that are projective in the variety that they generate, and free algebras over partial tournaments in that variety. We prove that the variety determined by three-variable equations of tournaments is not locally finite. We also construct infinitely many finite, pairwise incomparable simple tournaments.
We investigate tournaments that are projective in the variety that they generate, and free algebras over partial tournaments in that variety. We prove that the variety determined by three-variable equations of tournaments is not locally finite. We also construct infinitely many finite, pairwise incomparable simple tournaments.
Classification : 05C20, 08B30
Keywords: tournament; variety; projective algebra
@article{CMJ_2003_53_2_a15,
     author = {Je\v{z}ek, J.},
     title = {Constructions over tournaments},
     journal = {Czechoslovak Mathematical Journal},
     pages = {413--428},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983462},
     zbl = {1021.05041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/}
}
TY  - JOUR
AU  - Ježek, J.
TI  - Constructions over tournaments
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 413
EP  - 428
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/
LA  - en
ID  - CMJ_2003_53_2_a15
ER  - 
%0 Journal Article
%A Ježek, J.
%T Constructions over tournaments
%J Czechoslovak Mathematical Journal
%D 2003
%P 413-428
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/
%G en
%F CMJ_2003_53_2_a15
Ježek, J. Constructions over tournaments. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 413-428. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/

[1] R.  Freese, J. Ježek and J. B. Nation: Free Lattices. Mathematical Surveys and Monographs. Vol.  42. Amer. Math. Soc., Providence, 1995. | MR

[2] E.  Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 13 (1970), 151–164. | MR

[3] E. Fried: Non-finitely based varieties of weakly associative lattices. Algebra Universalis (to appear).

[4] J.  Ježek, P.  Marković, M.  Maróti and R.  McKenzie: Equations of tournaments are not finitely based. Discrete Math. 211 (2000), 243–248. | DOI | MR

[5] J.  Ježek, P.  Marković, M.  Maróti and R.  McKenzie: The variety generated by tournaments. Acta Univ. Carolinae 40 (1999), 21–41. | MR

[6] J.  Ježek, R.  McKenzie: The variety generated by equivalence algebras. Algebra Universalis 45 (2001), 211–220. | DOI | MR

[7] B.  Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. | DOI | MR

[8] R.  McKenzie, G.  McNulty and W.  Taylor: Algebras, Lattices, Varieties, Vol. I. Wadsworth & Brooks/Cole, Monterey, CA, 1987. | MR

[9] V.  Müller, J.  Nešetřil and J.  Pelant: Either tournaments or algebras? Discrete Math. 11 (1975), 37–66. | DOI | MR