@article{CMJ_2003_53_2_a15,
author = {Je\v{z}ek, J.},
title = {Constructions over tournaments},
journal = {Czechoslovak Mathematical Journal},
pages = {413--428},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983462},
zbl = {1021.05041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/}
}
Ježek, J. Constructions over tournaments. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 413-428. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a15/
[1] R. Freese, J. Ježek and J. B. Nation: Free Lattices. Mathematical Surveys and Monographs. Vol. 42. Amer. Math. Soc., Providence, 1995. | MR
[2] E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 13 (1970), 151–164. | MR
[3] E. Fried: Non-finitely based varieties of weakly associative lattices. Algebra Universalis (to appear).
[4] J. Ježek, P. Marković, M. Maróti and R. McKenzie: Equations of tournaments are not finitely based. Discrete Math. 211 (2000), 243–248. | DOI | MR
[5] J. Ježek, P. Marković, M. Maróti and R. McKenzie: The variety generated by tournaments. Acta Univ. Carolinae 40 (1999), 21–41. | MR
[6] J. Ježek, R. McKenzie: The variety generated by equivalence algebras. Algebra Universalis 45 (2001), 211–220. | DOI | MR
[7] B. Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. | DOI | MR
[8] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Vol. I. Wadsworth & Brooks/Cole, Monterey, CA, 1987. | MR
[9] V. Müller, J. Nešetřil and J. Pelant: Either tournaments or algebras? Discrete Math. 11 (1975), 37–66. | DOI | MR