An iteration process for nonlinear mappings in uniformly convex linear metric spaces
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 405-412
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.
We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.
Classification : 47H10, 47J25, 54H25
Keywords: linear metric space; fixed point; uniformly convex
@article{CMJ_2003_53_2_a14,
     author = {Beg, Ismat},
     title = {An iteration process for nonlinear mappings in uniformly convex linear metric spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {405--412},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983461},
     zbl = {1030.47051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a14/}
}
TY  - JOUR
AU  - Beg, Ismat
TI  - An iteration process for nonlinear mappings in uniformly convex linear metric spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 405
EP  - 412
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a14/
LA  - en
ID  - CMJ_2003_53_2_a14
ER  - 
%0 Journal Article
%A Beg, Ismat
%T An iteration process for nonlinear mappings in uniformly convex linear metric spaces
%J Czechoslovak Mathematical Journal
%D 2003
%P 405-412
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a14/
%G en
%F CMJ_2003_53_2_a14
Beg, Ismat. An iteration process for nonlinear mappings in uniformly convex linear metric spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 405-412. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a14/

[1] B.  Beauzamy: Un cas de convergence des iterees d’une contraction dans un espace uniforment convexe. (1978), Unpublished.

[2] I.  Beg: Structure of the set of fixed points of nonexpansive mappings on convex metric spaces. Annales Univ. Marie Curie-Sklodowska (Sec.  A)—Mathematica  LII(2)(1), 1998, pp. 7–14. | MR | Zbl

[3] I.  Beg: Inequalities in metric spaces with applications. Topol. Methods Nonlinear Anal. 17 (2001), 183–190. | DOI | MR | Zbl

[4] I. Beg, A. Azam, F.  Ali and T.  Minhas: Some fixed point theorems in convex metric spaces. Rend. Circ. Mat. Palermo XL (1991), 307–315. | MR

[5] I.  Beg, N.  Shahzad and M.  Iqbal: Fixed point theorems and best approximation in convex rmetric spaces. J. Approx. Theory 8 (1992), 97–105. | MR

[6] L.  Ciric: On some discontinuous fixed point theorems in convex metric spaces. Czechoslovak Math. J. 43(188) (1993), 319–326. | MR

[7] X. P.  Ding: Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl. 132 (1988), 114–122. | DOI | MR | Zbl

[8] L.  Gajic and M.  Stojakovic: A remark on Kaneko report on general contractive type conditions for multivalued mappings in Takahashi convex metric spaces. Zb. Rad. Prirod. Mat. Fak. Ser. Mat.  23 (1993), 61–66. | MR

[9] M. D.  Guay, K. L. Singh and J. H. M.  Whitfield: Fixed point theorems for nonexpansive mappings in convex metric spaces. Nonlinear analysis and application, Proc. int. Conf. Lecture Notes Pure Appl. Math. 80, S. P.  Singh, J. H.  Barry (eds.), Marcel Dekker Inc., New York, 1982, pp. 179–189. | MR

[10] W. A.  Kirk: Krasnoselskii’s iteration process in hyperbolic spaces. Numer. Funct. Anal. Optim. 4 (1982), 371–381. | DOI | MR

[10] J.  Moreau: Un cos des convergence des iterees d’une contraction d’une espace Hilbertien. C. R. Acad. Paris 286 (1978), 143–144.

[11] S. A.  Naimpally, K. L.  Singh and J. H. M.  Whitfield: Fixed points in convex metric spaces. Math. Japon. 29 (1984), 585–597. | MR

[12] T.  Shimizu and W.  Takahashi: Fixed point theorems in certain convex metric spaces. Math. Japon. 37 (1992), 855–859. | MR

[13] T.  Shimizu and W.  Takahashi: Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. 8 (1996), 197–203. | DOI | MR

[14] W.  Takahashi: A convexity in metric spaces and nonexpansive mapping I. Kodai Math. Sem. Rep. 22 (1970), 142–149. | DOI | MR

[15] F.  Tricomi: Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale. Giorn. Mat. Bataglini 54 (1916), 1–9.