Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 397-404
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
Classification : 47H09, 47H10, 47J25
Keywords: Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping
@article{CMJ_2003_53_2_a13,
     author = {Jung, Jong Soo and Sahu, Daya Ram},
     title = {Dual convergences of iteration processes for nonexpansive mappings in {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {397--404},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983460},
     zbl = {1030.47037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a13/}
}
TY  - JOUR
AU  - Jung, Jong Soo
AU  - Sahu, Daya Ram
TI  - Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 397
EP  - 404
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a13/
LA  - en
ID  - CMJ_2003_53_2_a13
ER  - 
%0 Journal Article
%A Jung, Jong Soo
%A Sahu, Daya Ram
%T Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
%J Czechoslovak Mathematical Journal
%D 2003
%P 397-404
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a13/
%G en
%F CMJ_2003_53_2_a13
Jung, Jong Soo; Sahu, Daya Ram. Dual convergences of iteration processes for nonexpansive mappings in Banach spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 397-404. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a13/

[1] R. E.  Bruck and S. Reich: Accretive operators, Banach limits and dual ergodic theorems. Bull. Acad. Polon. Sci. 29 (1981), 585–589. | MR

[2] L. Deng: Convergence of the Ishikawa iteration process for nonexpansive mappings. J.  Math. Anal. Appl. 199 (1996), 769–775. | MR | Zbl

[3] K.  Goebel and S.  Reich: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984. | MR

[4] S.  Ishikawa: Fixed point by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR

[5] K. S.  Ha and J.  S.  Jung: Strong convergence theorems for accretive operators in Banach spaces. J.  Math. Anal. Appl. 104 (1990), 330–339. | DOI | MR

[6] G.  G.  Lorentz: A contribution to the theory of divergent series. Acta Math. 80 (1948), 167–190. | DOI | MR

[7] W. R.  Mann: Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR | Zbl

[8] S.  Reich: Weak convergence theorem for nonexpansive mappings in Banach spaces. J.  Math. Anal. Appl. 67 (1979), 274–276. | DOI | MR

[9] S.  Reich: Product formulas, nonlinear semigroups and accretive operators. J.  Functional Analysis 36 (1980), 147–168. | DOI | MR | Zbl

[10] K.  K.  Tan and H.  K.  Xu: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J.  Math. Anal. Appl. 178 (1993), 301–308. | DOI | MR