Continuous extendibility of solutions of the Neumann problem for the Laplace equation
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 377-395
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.
A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.
Classification : 31B10, 35B60, 35B65, 35J05, 35J25
Keywords: Neumann problem; Laplace equation; continuous extendibility
@article{CMJ_2003_53_2_a12,
     author = {Medkov\'a, Dagmar},
     title = {Continuous extendibility of solutions of the {Neumann} problem for the {Laplace} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {377--395},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983459},
     zbl = {1075.35508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a12/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Continuous extendibility of solutions of the Neumann problem for the Laplace equation
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 377
EP  - 395
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a12/
LA  - en
ID  - CMJ_2003_53_2_a12
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Continuous extendibility of solutions of the Neumann problem for the Laplace equation
%J Czechoslovak Mathematical Journal
%D 2003
%P 377-395
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a12/
%G en
%F CMJ_2003_53_2_a12
Medková, Dagmar. Continuous extendibility of solutions of the Neumann problem for the Laplace equation. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 377-395. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a12/

[1] T. S.  Angell, R. E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. | MR

[2] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin, 1966. | MR | Zbl

[3] N.  Boboc, C.  Constantinescu and A.  Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math.  J. 23 (1963), 73–96. | MR

[4] M.  Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961. | MR

[5] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)

[6] E.  De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$  dimensioni. Ricerche Mat. 4 (1955), 95–113. | MR

[7] E. B.  Fabes, M.  Jodeit and N. M.  Riviére: Potential techniques for boundary value problems in $C^1$  domains. Acta Math. 141 (1978), 165–186. | DOI | MR

[8] N. V.  Grachev and V. G.  Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64. | MR

[9] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

[10] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

[11] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.

[12] H.  Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. | MR | Zbl

[13] V.  Kordula, V.  Müller and V.  Rakočević: On the semi-Browder spectrum. Studia Math. 123 (1997), 1–13. | MR

[14] J.  Köhn and M.  Sieveking: Zum Cauchyschen und Dirichletschen Problem. Math. Ann. 177 (1968), 133–142. | DOI | MR

[15] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. | MR

[16] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. | DOI | MR

[17] J.  Král: Problème de Neumann faible avec condition frontière dans  $L^1$. Séminaire de Théorie du Potentiel (Université Paris VI) No.  9, Lecture Notes in Mathematics Vol.  1393, Springer-Verlag, 1989, pp. 145–160.

[18] J. Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Appl. Math. 31 (1986), 293–308. | MR

[19] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) | MR

[20] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math.  J. 47(122) (1997), 651–679. | DOI | MR

[21] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. | DOI | MR

[22] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48(123) (1998), 768–784. | DOI | MR

[23] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. | MR | Zbl

[24] I.  Netuka: Generalized Robin problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 312-324. | MR | Zbl

[25] I.  Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 462–489. | MR | Zbl

[26] I.  Netuka: The third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 554–580. | MR | Zbl

[27] I.  Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math.  J. 25(100) (1975), 309–316. | MR | Zbl

[28] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177. | DOI | MR

[29] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Appl. Anal. 56 (1995), 109–115. | DOI | MR | Zbl

[30] Ch. G.  Simader: The weak Dirichlet and Neumann problem for the Laplacian in  $L^q$ for bounded and exterior domains. Applications. Nonlinear analysis, function spaces and applications, Vol.  4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math.  119, 1990, pp. 180–223. | MR

[31] Ch. G.  Simader and H.  Sohr: The Dirichlet problem for the Laplacian in bounded and unbounded domains. Pitman Research Notes in Mathematics Series  360, Addison Wesley Longman Inc., 1996. | MR

[32] M.  Schechter: Principles of Functional Analysis. Academic Press, 1973. | MR

[33] W. P.  Ziemer: Weakly Differentiable Functions. Springer Verlag, 1989. | MR | Zbl