Keywords: holomorphic functions; Fréchet spaces; preduals
@article{CMJ_2003_53_2_a11,
author = {Boyd, Christopher},
title = {Preduals of spaces of vector-valued holomorphic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {365--376},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983458},
zbl = {1028.46063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a11/}
}
Boyd, Christopher. Preduals of spaces of vector-valued holomorphic functions. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a11/
[1] R. Alencar: An application of Singer’s theorem to homogeneous polynomials. Contemp. Math. 144 (1993), 1–8. | DOI | MR | Zbl
[2] A. Alencar and K. Floret: Weak continuity of multilinear mappings on Tsirelson’s space. Quaestiones Math. 21 (1998), 177–186. | DOI | MR
[3] J. M. Ansemil and S. Ponte: Topologies associated with the compact open topology on ${\mathcal H}(U)$. Proc. R. Ir. Acad. 82A (1982), 121–129. | MR
[4] R. Aron and M. Schottenloher: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21 (1976), 7–30. | DOI | MR
[5] P. Aviles and J. Mujica: Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces. Rend. Math. 6 (1977), 117–127. | MR
[6] K.-D. Bierstedt: An introduction to locally convex inductive limits. Functional Analysis and its Applications, World Scientific, 1988, pp. 35–132. | MR | Zbl
[7] K.-D. Bierstedt and J. Bonet: Biduality in Fréchet and (LB)-spaces. Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 113–133. | MR
[8] K.-D. Bierstedt and J. Bonet: Density condition in Fréchet and (DF)-spaces. Rev. Matem. Univ. Complut. Madrid 2 (1989), 59–76. | MR
[9] K.-D. Bierstedt, J. Bonet and A. Peris: Vector-valued holomorphic germs on Fréchet Schwartz spaces. Proc. Royal Ir. Acad. 94A (1994), 3–46.
[10] K.-D. Bierstedt and R. Meise: Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to study of $({\mathcal H}(U),\tau _\omega )$. Advances in Holomorphy (J. A. Barroso, ed.). North-Holland Math. Studies 33 (1979), 111–178. | DOI | MR
[11] J. Bonet: A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull. 33 (1991), 301–314. | MR | Zbl
[12] J. Bonet, P. Domański and J. Mujica: Completeness of spaces of vector-valued holomorphic germs. Math. Scand. 75 (1995), 250–260. | MR
[13] C. Boyd: Preduals of the space of holomorphic functions on a Fréchet space. Ph.D. Thesis, National University of Ireland (1992).
[14] C. Boyd: Distinguished preduals of the space of holomorphic functions. Rev. Mat. Univ. Complut. Madrid 6 (1993), 221–232. | MR
[15] C. Boyd: Montel and reflexive preduals of the space of holomorphic functions. Studia Math. 107 (1993), 305–325. | DOI | MR
[16] C. Boyd: Some topological properties of preduals of spaces of holomorphic functions. Proc. Royal Ir. Acad. 94A (1994), 167–178. | MR | Zbl
[17] C. Boyd and A. Peris: A projective description of the Nachbin ported topology. J. Math. Anal. Appl. 197 (1996), 635–657. | DOI | MR
[18] J. F. Colombeau and D. Lazet: Sur les théoremes de Vitali et de Montel en dimension infinie. C.R.A.Sc., Paris 274 (1972), 185–187. | MR
[19] H. Collins and W. Ruess: Duals of spaces of compact operators. Studia Math. 74 (1982), 213–245. | DOI | MR
[20] A. Defant and W. Govaerts: Tensor products and spaces of vector-valued continuous functions. Manuscripta Math. 55 (1986), 432–449. | MR
[21] S. Dineen: Complex Analysis on Locally Convex Spaces. North-Holland Math. Studies, Vol. 57, 1981. | MR
[22] S. Dineen: Holomorphic functions and Banach-nuclear decompositions of Fréchet spaces. Studia Math. 113 (1995), 43–54. | DOI | MR | Zbl
[23] K. G. Große-Erdmann: The Borel-Okada theorem revisited. Habilitation Schrift, 1992.
[24] R. B. Holmes: Geometric Functional Analysis and its Applications. Springer-Verlag Graduate Texts in Math., Vol. 24, 1975. | DOI | MR | Zbl
[25] J. Horváth: Topological Vector Spaces and Distributions, Vol. 1. Addison-Wesley, Massachusetts, 1966. | MR
[26] H. Jarchow: Locally Convex Spaces. B. G. Teubner, Stuttgart, 1981. | MR | Zbl
[27] N. Kalton: Schauder decompositions in locally convex spaces. Cambridge Phil. Soc. 68 (1970), 377–392. | DOI | MR | Zbl
[28] J. Mujica: A Banach-Dieudonné Theorem for the space of germs of holomorphic functions. J. Funct. Anal. 57 (1984), 32–48. | DOI | MR
[29] J. Mujica and L. Nachbin: Linearization of holomorphic mappings on locally convex spaces. J. Math. Pures Appl. 71 (1992), 543–560. | MR
[30] L. Nachbin: Weak holomorphy. Unpublished manuscript.
[31] P. Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces. North Holland Math. Studies, Vol. 131. North Holland, Amsterdam, 1987. | MR
[32] A. Peris: Quasinormable spaces and the problem of topologies of Grothendieck. Ann. Acad. Sci. Fenn. 19 (1994), 167–203. | MR | Zbl
[33] A. Peris: Topological tensor products of a Fréchet Schwartz space and a Banach space. Studia Math. 106 (1993), 189–196. | DOI | MR | Zbl
[34] W. Ruess: Compactness and collective compactness in spaces of compact operators. J. Math. Anal. Appl. 84 (1981), 400–417. | DOI | MR | Zbl
[35] R. A. Ryan: Applications of topological tensor products to infinite dimensional holomorphy. Ph.D. Thesis, Trinity College, Dublin, 1980.
[36] H. H. Schaefer: Topological Vector Spaces. Third Printing corrected, Springer-Verlag, 1971. | MR | Zbl
[37] J. Schmets: Espaces de fonctions continues. Lecture Notes in Math., Vol. 519, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl