Laskerian lattices
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 351-363
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate prime divisors, $B_w$-primes and $zs$-primes in $C$-lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.
In this paper we investigate prime divisors, $B_w$-primes and $zs$-primes in $C$-lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.
Classification : 06F05, 06F10, 13A15
Keywords: primary element; compactly packed lattice; Laskerian lattice
@article{CMJ_2003_53_2_a10,
     author = {Jayaram, C.},
     title = {Laskerian lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {351--363},
     year = {2003},
     volume = {53},
     number = {2},
     mrnumber = {1983457},
     zbl = {1024.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/}
}
TY  - JOUR
AU  - Jayaram, C.
TI  - Laskerian lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 351
EP  - 363
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/
LA  - en
ID  - CMJ_2003_53_2_a10
ER  - 
%0 Journal Article
%A Jayaram, C.
%T Laskerian lattices
%J Czechoslovak Mathematical Journal
%D 2003
%P 351-363
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/
%G en
%F CMJ_2003_53_2_a10
Jayaram, C. Laskerian lattices. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 351-363. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/

[1] F.  Alarcon, D. D.  Anderson and C.  Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26. | DOI | MR

[2] D. D.  Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl

[3] D. D.  Anderson, J.  Matigevic and W.  Nichols: The Krull Intersection Theorem II. Pacific J. Math. 66 (1976), 15–22. | DOI | MR

[4] D. D. Anderson and E. W. Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. | DOI | MR

[5] J. T.  Arnold and J. W.  Brewer: Commutative rings which are locally Noetherian. J. Math. Kyoto Univ. 11-1 (1971), 45–49. | MR

[6] R. P.  Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. | DOI | MR | Zbl

[7] R. W.  Gilmer and W.  Heinzer: The Laskerian property, power series rings and Noetherian spectra. Proc. Amer. Math. Soc. 79 (1980), 13–16. | DOI | MR

[8] W.  Heinzer and J. Ohm: Locally Noetherian commutative rings. Tran. Amer. Math. Soc. 158 (1971), 273–284. | DOI | MR

[9] W.  Heinzer and D.  Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. | DOI | MR

[10] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. | DOI | MR

[11] J.  Ohm and R. L.  Pendleton: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–639. | DOI | MR