Keywords: primary element; compactly packed lattice; Laskerian lattice
@article{CMJ_2003_53_2_a10,
author = {Jayaram, C.},
title = {Laskerian lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {351--363},
year = {2003},
volume = {53},
number = {2},
mrnumber = {1983457},
zbl = {1024.06008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/}
}
Jayaram, C. Laskerian lattices. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 351-363. http://geodesic.mathdoc.fr/item/CMJ_2003_53_2_a10/
[1] F. Alarcon, D. D. Anderson and C. Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26. | DOI | MR
[2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl
[3] D. D. Anderson, J. Matigevic and W. Nichols: The Krull Intersection Theorem II. Pacific J. Math. 66 (1976), 15–22. | DOI | MR
[4] D. D. Anderson and E. W. Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. | DOI | MR
[5] J. T. Arnold and J. W. Brewer: Commutative rings which are locally Noetherian. J. Math. Kyoto Univ. 11-1 (1971), 45–49. | MR
[6] R. P. Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. | DOI | MR | Zbl
[7] R. W. Gilmer and W. Heinzer: The Laskerian property, power series rings and Noetherian spectra. Proc. Amer. Math. Soc. 79 (1980), 13–16. | DOI | MR
[8] W. Heinzer and J. Ohm: Locally Noetherian commutative rings. Tran. Amer. Math. Soc. 158 (1971), 273–284. | DOI | MR
[9] W. Heinzer and D. Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. | DOI | MR
[10] C. Jayaram and E. W. Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. | DOI | MR
[11] J. Ohm and R. L. Pendleton: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–639. | DOI | MR