Keywords: pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition
@article{CMJ_2003_53_1_a9,
author = {Jakub{\'\i}k, J\'an},
title = {Convex chains in a pseudo {MV-algebra}},
journal = {Czechoslovak Mathematical Journal},
pages = {113--125},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1962003},
zbl = {1014.06010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/}
}
Jakubík, Ján. Convex chains in a pseudo MV-algebra. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/
[1] R. Cignoli, M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[3] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. | MR
[4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposyium on Economic Informatics, Bucharest, 1999, pp. 961–968. | MR
[5] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Multiple Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95–135. | MR
[6] J. Jakubík: Direct product of $MV$-algebras. Czechoslovak Math. J. 44(119) (1994), 725–739. | MR
[7] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142. | MR
[8] J. Jakubík: On chains in $MV$-algebras. Math. Slovaca 51 (2001), 151–166. | MR
[9] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52(127) (2002), 255–273. | DOI | MR