Convex chains in a pseudo MV-algebra
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 113-125
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a pseudo $MV$-algebra $\mathcal A$ we denote by $\ell (\mathcal A)$ the underlying lattice of $\mathcal A$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal A)$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
For a pseudo $MV$-algebra $\mathcal A$ we denote by $\ell (\mathcal A)$ the underlying lattice of $\mathcal A$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal A)$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
Classification :
06D35
Keywords: pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition
Keywords: pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition
@article{CMJ_2003_53_1_a9,
author = {Jakub{\'\i}k, J\'an},
title = {Convex chains in a pseudo {MV-algebra}},
journal = {Czechoslovak Mathematical Journal},
pages = {113--125},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1962003},
zbl = {1014.06010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/}
}
Jakubík, Ján. Convex chains in a pseudo MV-algebra. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/