Convex chains in a pseudo MV-algebra
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 113-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a pseudo $MV$-algebra $\mathcal A$ we denote by $\ell (\mathcal A)$ the underlying lattice of $\mathcal A$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal A)$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
For a pseudo $MV$-algebra $\mathcal A$ we denote by $\ell (\mathcal A)$ the underlying lattice of $\mathcal A$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal A)$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
Classification : 06D35
Keywords: pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition
@article{CMJ_2003_53_1_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {Convex chains in a pseudo {MV-algebra}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {113--125},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1962003},
     zbl = {1014.06010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Convex chains in a pseudo MV-algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 113
EP  - 125
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/
LA  - en
ID  - CMJ_2003_53_1_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Convex chains in a pseudo MV-algebra
%J Czechoslovak Mathematical Journal
%D 2003
%P 113-125
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/
%G en
%F CMJ_2003_53_1_a9
Jakubík, Ján. Convex chains in a pseudo MV-algebra. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a9/

[1] R.  Cignoli, M. I.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, vol.  7. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[2] P.  Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[3] A.  Dvurečenskij and S.  Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. | MR

[4] G.  Georgescu and A.  Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposyium on Economic Informatics, Bucharest, 1999, pp. 961–968. | MR

[5] G.  Georgescu and A.  Iorgulescu: Pseudo $MV$-algebras. Multiple Valued Logic (a special issue dedicated to Gr. C.  Moisil) 6 (2001), 95–135. | MR

[6] J.  Jakubík: Direct product of $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739. | MR

[7] J.  Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142. | MR

[8] J.  Jakubík: On chains in $MV$-algebras. Math. Slovaca 51 (2001), 151–166. | MR

[9] J.  Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math.  J. 52(127) (2002), 255–273. | DOI | MR