Keywords: monounary algebra; homogeneous; 2-homogeneous; 2-set-homogeneous
@article{CMJ_2003_53_1_a4,
author = {Jakub{\'\i}kov\'a-Studenovsk\'a, Danica},
title = {On 2-homogeneity of monounary algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {55--68},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1961998},
zbl = {1014.08005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a4/}
}
Jakubíková-Studenovská, Danica. On 2-homogeneity of monounary algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a4/
[1] B. Csákány: Homogeneous algebras. In: Contributions to General Algebra. Proc. Klagenfurt Conference, 1978, Verlag J. Heyn, Klagenfurt, 1979, pp. 77–81. | MR
[2] B. Csákány: Homogeneous algebras are functionally complete. Algebra Universalis 11 (1980), 149–158. | DOI | MR
[3] B. Csákány and T. Gavalcová: Finite homogeneous algebras I. Acta Sci. Math. 42 (1980), 57–65. | MR
[4] M. Droste and H. D. Macpherson: On $k$-homogeneous posets and graphs. J. Comb. Theory Ser. A 56 (1991), 1–15. | DOI | MR
[5] M. Droste, M. Giraudet, H. D. Macpherson and N. Sauer: Set-homogeneous graphs. J. Comb. Theory Ser. B 62 (1994), 63–95. | DOI | MR
[6] M. Droste, M. Giraudet and D. Macpherson: Set-homogeneous graphs and embeddings of total orders. Order 14 (1997), 9–20. | DOI | MR
[7] R. Fraïssé: Theory of Relations. North-Holland, Amsterdam, 1986. | MR
[8] B. Ganter, J. Płonka and H. Werner: Homogeneous algebras are simple. Fund. Math. 79 (1973), 217–220. | DOI | MR
[9] D. Jakubíková-Studenovská: Homogeneous monounary algebras. Czechoslovak Math. J. 52 (2002), 309–317. | DOI | MR
[10] D. Jakubíková-Studenovská: On homogeneous and 1-homogeneous monounary algebras. In: Contributions to General Algebra 12. Proceedings of the Vienna Conference, June, 1999, Verlag J. Heyn, Klagenfurt, 2000, pp. 222–224.
[11] E. Marczewski: Homogeneous algebras and homogeneous operations. Fund. Math. 56 (1964), 81–103. | DOI | MR
[12] A. H. Mekler: Homogeneous partially ordered sets. In: Finite and Infinite Combinatorics in Sets and Logic. Proceeding NATO ASI conference in Banf 1991, N. W. Sauer, R. E. Woodrow and B. Sands (eds.), Kluwer, Dordrecht, 1993, pp. 279–288. | MR | Zbl
[13] R. S. Pierce: Some questions about complete Boolean algebras. In: Lattice Theory, Proc. Symp. Pure Math, Vol. II, AMS, Providence, 1961, pp. 129–140. | MR | Zbl