Keywords: linear positive operators; Korovkin type theorem; weighted $L_p({\mathrm loc})$ spaces
@article{CMJ_2003_53_1_a3,
author = {Gadjiev, A. D. and Efendiyev, R. O. and Ibikli, E.},
title = {On {Korovkin} type theorem in the space of locally integrable functions},
journal = {Czechoslovak Mathematical Journal},
pages = {45--53},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1961997},
zbl = {1013.41011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/}
}
TY - JOUR AU - Gadjiev, A. D. AU - Efendiyev, R. O. AU - Ibikli, E. TI - On Korovkin type theorem in the space of locally integrable functions JO - Czechoslovak Mathematical Journal PY - 2003 SP - 45 EP - 53 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/ LA - en ID - CMJ_2003_53_1_a3 ER -
Gadjiev, A. D.; Efendiyev, R. O.; Ibikli, E. On Korovkin type theorem in the space of locally integrable functions. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/
[1] H. Berens and A. DeVore: Quantitative Korovkin theorems for positive linear operators in $L_p$ space. Trans. Amer. Math. Soc. 245 (1978), 349–361. | MR
[2] S. J. Bernau: Theorems of Korovkin type for $L^p$ spaces. Pacific J. Math. 53 (1974), 11–19. | DOI | MR
[3] K. Donner: Korovkin Theorems in $L^p$-spaces. J. Funct. Anal. 42 (1981), 12–28. | DOI | MR
[4] V. K. Dzyadik: On the approximation of functions by linear positive operators and singular integrals. Mat. Sbornik 70 (1966), 508–517. (Russian) | MR
[5] A. D. Gadziev: The convergence problem for a sequence of positive linear operators on unbounded sets, and Theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218, no. 5. | MR | Zbl
[6] A. D. Gadjiev: On P. P. Korovkin type theorems. Math. Zametki, Vol. 20 (1976). (Russian)
[7] N. B. Haaser and J. A. Sullivan: Real Analysis. Dover Publications, INC, New York, 1991. | MR
[8] W. Kitto and D. E. Walbert: Korovkin approximations in $L^p$-spaces. Pacific J. Math. 63 (1976), 153–167. | DOI | MR
[9] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977. | MR
[10] M. W. Muller: $L_p$-approximation by the method of integral Meyer-König and Zeller operators. Studia Math. 63 (1978), 81–88. | DOI | MR
[11] J. J. Swetits and B. Wood: Quantitative estimates for $L_p$-approximation with positive linear operators. J. Approx. Theory 38 (1983), 81–89. | DOI | MR
[12] J. J. Swetits and B. Wood: On degree of $L_p$-approximation with positive linear operators. J. Approx. Theory 87 (1996), 239–241. | MR
[13] B. Wood: Degree of $L_p$-approximation with certain positive convolution operators. J. Approx. Theory 23 (1978), 354–363. | DOI | MR