On Korovkin type theorem in the space of locally integrable functions
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 45-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that a Korovkin type theorem for a sequence of linear positive operators acting in weighted space $L_{p,w}({\mathrm loc})$ does not hold in all this space and is satisfied only on some subspace.
It is shown that a Korovkin type theorem for a sequence of linear positive operators acting in weighted space $L_{p,w}({\mathrm loc})$ does not hold in all this space and is satisfied only on some subspace.
Classification : 41A25, 41A36, 41A65
Keywords: linear positive operators; Korovkin type theorem; weighted $L_p({\mathrm loc})$ spaces
@article{CMJ_2003_53_1_a3,
     author = {Gadjiev, A. D. and Efendiyev, R. O. and Ibikli, E.},
     title = {On {Korovkin} type theorem in the space of locally integrable functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--53},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1961997},
     zbl = {1013.41011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/}
}
TY  - JOUR
AU  - Gadjiev, A. D.
AU  - Efendiyev, R. O.
AU  - Ibikli, E.
TI  - On Korovkin type theorem in the space of locally integrable functions
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 45
EP  - 53
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/
LA  - en
ID  - CMJ_2003_53_1_a3
ER  - 
%0 Journal Article
%A Gadjiev, A. D.
%A Efendiyev, R. O.
%A Ibikli, E.
%T On Korovkin type theorem in the space of locally integrable functions
%J Czechoslovak Mathematical Journal
%D 2003
%P 45-53
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/
%G en
%F CMJ_2003_53_1_a3
Gadjiev, A. D.; Efendiyev, R. O.; Ibikli, E. On Korovkin type theorem in the space of locally integrable functions. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a3/

[1] H.  Berens and A.  DeVore: Quantitative Korovkin theorems for positive linear operators in  $L_p$ space. Trans. Amer. Math. Soc. 245 (1978), 349–361. | MR

[2] S. J.  Bernau: Theorems of Korovkin type for  $L^p$ spaces. Pacific J.  Math. 53 (1974), 11–19. | DOI | MR

[3] K.  Donner: Korovkin Theorems in $L^p$-spaces. J.  Funct. Anal. 42 (1981), 12–28. | DOI | MR

[4] V. K.  Dzyadik: On the approximation of functions by linear positive operators and singular integrals. Mat. Sbornik 70 (1966), 508–517. (Russian) | MR

[5] A. D.  Gadziev: The convergence problem for a sequence of positive linear operators on unbounded sets, and Theorems analogous to that of P. P.  Korovkin. Dokl. Akad. Nauk SSSR 218, no. 5. | MR | Zbl

[6] A. D.  Gadjiev: On P. P. Korovkin type theorems. Math. Zametki, Vol. 20 (1976). (Russian)

[7] N. B.  Haaser and J. A.  Sullivan: Real Analysis. Dover Publications, INC, New York, 1991. | MR

[8] W.  Kitto and D. E.  Walbert: Korovkin approximations in $L^p$-spaces. Pacific J.  Math. 63 (1976), 153–167. | DOI | MR

[9] A.  Kufner, O.  John and S.  Fučík: Function Spaces. Academia, Prague, 1977. | MR

[10] M. W.  Muller: $L_p$-approximation by the method of integral Meyer-König and Zeller operators. Studia Math. 63 (1978), 81–88. | DOI | MR

[11] J. J.  Swetits and B.  Wood: Quantitative estimates for $L_p$-approximation with positive linear operators. J. Approx. Theory 38 (1983), 81–89. | DOI | MR

[12] J. J.  Swetits and B.  Wood: On degree of $L_p$-approximation with positive linear operators. J. Approx. Theory 87 (1996), 239–241. | MR

[13] B.  Wood: Degree of $L_p$-approximation with certain positive convolution operators. J. Approx. Theory 23 (1978), 354–363. | DOI | MR