On a two-point boundary value problem for second order singular equations
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 19-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^{\prime \prime }=f(t,u)+g(t,u)u^{\prime };\quad u(a+)=0, \quad u(b-)=0 \] is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb R$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^{\prime \prime }=f(t,u)+g(t,u)u^{\prime };\quad u(a+)=0, \quad u(b-)=0 \] is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb R$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
Classification : 34B10, 34B16, 34B18
Keywords: second order singular equation; two-point boundary value problem; solvability
@article{CMJ_2003_53_1_a2,
     author = {Lomtatidze, A. and Torres, P.},
     title = {On a two-point boundary value problem for second order singular equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {19--43},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1961996},
     zbl = {1023.34011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a2/}
}
TY  - JOUR
AU  - Lomtatidze, A.
AU  - Torres, P.
TI  - On a two-point boundary value problem for second order singular equations
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 19
EP  - 43
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a2/
LA  - en
ID  - CMJ_2003_53_1_a2
ER  - 
%0 Journal Article
%A Lomtatidze, A.
%A Torres, P.
%T On a two-point boundary value problem for second order singular equations
%J Czechoslovak Mathematical Journal
%D 2003
%P 19-43
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a2/
%G en
%F CMJ_2003_53_1_a2
Lomtatidze, A.; Torres, P. On a two-point boundary value problem for second order singular equations. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 19-43. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a2/

[1] J. A.  Ackroyd: On the laminar compressible boundary layer with stationary origin on a moving flat wall. Proc. Cambridge Phil. Soc. 63 (1967), 871–888. | Zbl

[2] R. P.  Agarwal and D.  O’Regan: Singular boundary value problems for superlinear second order ordinary and delay differential equations. J.  Differential Equations 130 (1996), 333–355. | DOI | MR

[3] J. E. Bouillet and S. M.  Gomes: An equation with singular nonlinearity related to diffusion problems in one dimension. Quart. Appl. Math. 42 (1985), 395–402. | DOI | MR

[4] J. V.  Baxley: A singular nonlinear boundary value problem: membrane response of a spherical cap. SIAM J.  Appl. Math. 48 (1988), 497–505. | DOI | MR | Zbl

[5] L. E.  Bobisud, D.  O’Regan and W. D.  Royalty: Solvability of some nonlinear boundary value problems. Nonlinear Anal. 12 (1988), 855–869. | DOI | MR

[6] A. J.  Callegary and M. B.  Friedman: An analytic solution of a nonlinear singular boundary value problem in the theory of viscous fluids. J.  Math. Anal. Appl. 21 (1968), 510–529. | DOI | MR

[7] A. J.  Callegary and A.  Nachman: Some singular nonlinear differential equations arising in boundary layer theory. J.  Math. Anal. Appl. 64 (1978), 96–105. | DOI | MR

[8] A. J.  Callegary and A.  Nachman: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J.  Appl. Math. 38 (1980), 275–281. | DOI | MR

[9] D. R.  Dunninger and J. C.  Kurtz: A priori bounds and existence of positive solutions for singular nonlinear boundary value problems. SIAM J.  Math. Anal. 17 (1986), 595–609. | DOI | MR

[10] J. A.  Gatika, V.  Oliker and P.  Waltman: Singular nonlinear boundary value problems for second order ordinary differential equations. J.  Differential Equations 79 (1989), 62–78. | DOI | MR

[11] Z.  Guo: Solvability of some singular nonlinear boundary value problems and existence of positive radial solutions of some nonlinear elliptic problems. Nonlinear Anal. 16 (1991), 781–790. | DOI | MR | Zbl

[12] J.  Janus and A.  Myjak: A generalized Emden-Fowler equation with a negative exponent. Nonlinear Anal. 23 (1994), 953–970. | DOI | MR

[13] P.  Habets and F.  Zanolin: Upper and lower solutions for a generalized Emden–Fowler equation. J.  Math. Anal. Appl. 181 (1994), 684–700. | DOI | MR

[14] P.  Habets and F.  Zanolin: Positive solutions for a class of singular boundary value problems. Boll. Un. Mat. Ital.  A 9 (1995), 273–286. | MR

[15] I. T.  Kiguradze: On some singular boundary value problems for nonlinear differential equations of the second order. Differentsial’nye Uravneniya 4 (1968), 1753–1773. (Russian) | MR

[16] I.  T.  Kiguradze and A. G.  Lomtatidze: On certain boundary value problems for second order linear ordinary differential equations with singularities. J.  Math. Anal. Appl. 101 (1984), 325–347. | DOI | MR

[17] I. T.  Kiguradze and B. L.  Shekhter: Singular boundary value problems for second order ordinary differential equations. In: Curent Problems in Mathematics: Newest Results, Vol. 3, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, pp. 3-103. | MR

[18] Yu. A.  Klokov and A. I.  Lomakina: One a boundary value problem with singularities on the ends of the segment. Differ. Equations Latv. Mat. Ezhegodnik 17 (1976), 179–186.

[19] A.  Lomtatidze: Positive solutions of boundary value problems for second order ordinary differential equations with singular points. Differentsial’nye Uravneniya 23 (1987), 1685–1692. | MR

[20] A.  Lomtatidze: Existence of conjugate points for second order linear differential equations. Georgian Math. J. 2 (1995), 93–98. | DOI | MR | Zbl

[21] C. D.  Luning and W. L.  Perry: Positive solutions of negative exponent generalized Emden–Fowler boundary value problems. SIAM J.  Math. Anal. 12 (1981), 874–879. | DOI | MR

[22] N. F.  Morozov: On analytic structure of a solution of the membrane equation. Dokl. Akad. Nauk SSSR 152 (1963), 78–80.

[23] N. F.  Morozov and L. S.  Srubshchik: Application of Chaplygin’s method to investigation of the membrane equation. Differentsial’nye Uravneniya 2 (1966), 425–427. (Russian)

[24] L. S.  Srubshchik and V. I.  Yudovich: Asymptotics of equation of large deflection of circular symmetrically loaded plate. Sibirsk. Mat. Zh. 4 (1963), 657–672. (Russian)

[25] S.  Taliaferro: A nonlinear singular boundary value problem. Nonlinear Anal. 3 (1979), 897–904. | DOI | MR | Zbl

[26] A.  Tineo: Existence theorems for a singular two-point Dirichlet problem. Nonlinear Anal. 19 (1992), 323–333. | DOI | MR | Zbl

[27] J.  Wang: Solvability of singular nonlinear two-point boundary value problems. Nonlinear Anal. 24 (1995), 555–561. | DOI | MR | Zbl