Precovers
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 191-203 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal G$ be an abstract class (closed under isomorpic copies) of left $R$-modules. In the first part of the paper some sufficient conditions under which $\mathcal G$ is a precover class are given. The next section studies the $\mathcal G$-precovers which are $\mathcal G$-covers. In the final part the results obtained are applied to the hereditary torsion theories on the category on left $R$-modules. Especially, several sufficient conditions for the existence of $\sigma $-torsionfree and $\sigma $-torsionfree $\sigma $-injective covers are presented.
Let $\mathcal G$ be an abstract class (closed under isomorpic copies) of left $R$-modules. In the first part of the paper some sufficient conditions under which $\mathcal G$ is a precover class are given. The next section studies the $\mathcal G$-precovers which are $\mathcal G$-covers. In the final part the results obtained are applied to the hereditary torsion theories on the category on left $R$-modules. Especially, several sufficient conditions for the existence of $\sigma $-torsionfree and $\sigma $-torsionfree $\sigma $-injective covers are presented.
Classification : 16D50, 16D90, 16S90
Keywords: precover; cover; (pre)cover class of modules; hereditary torsion theory; relatively injective modules
@article{CMJ_2003_53_1_a14,
     author = {Bican, Ladislav and Torrecillas, Blas},
     title = {Precovers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {191--203},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1962008},
     zbl = {1016.16003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a14/}
}
TY  - JOUR
AU  - Bican, Ladislav
AU  - Torrecillas, Blas
TI  - Precovers
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 191
EP  - 203
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a14/
LA  - en
ID  - CMJ_2003_53_1_a14
ER  - 
%0 Journal Article
%A Bican, Ladislav
%A Torrecillas, Blas
%T Precovers
%J Czechoslovak Mathematical Journal
%D 2003
%P 191-203
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a14/
%G en
%F CMJ_2003_53_1_a14
Bican, Ladislav; Torrecillas, Blas. Precovers. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 191-203. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a14/

[1] L.  Bican, T.  Kepka and P.  Němec: Rings, Modules, and Preradicals. Marcel Dekker, New York, 1982. | MR

[2] E.  Enochs: Torsion free covering modules  II. Proc. Amer. Math. Soc. 114 (1963), 884–889. | DOI | MR

[3] J.  Golan: Torsion Theories. Pitman Monographs and Surveys in Pure an Applied Matematics, vol. 29, Longman Scientific and Technical, 1986. | MR | Zbl

[4] J. R.  García Rozas and B.  Torrecillas: On the existence of covers by injective modules relative to a torsion theory. Comm. Algebra 24 (1996), 1737–1748. | DOI | MR

[5] J.  Rada and M.  Saorín: Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra 26 (1998), 899–912. | DOI | MR

[6] M.  Teply: Torsionfree injective modules. Pacific J.  Math. 28 (1969), 441–453. | DOI | MR

[7] M.  Teply: Torsion-free covers  II. Israel J.  Math. 23 (1976), 132–136. | DOI | MR | Zbl

[8] B.  Torrecillas: T-torsionfree T-injective covers. Comm. Algebra 12 (1984), 2707–2726. | DOI | MR

[9] J.  Xu: Flat Covers of Modules. Lecture Notes in Mathematics, 1634 Springer Verlag, Berlin-Heidelberg-New York, 1996. | MR | Zbl