Keywords: Ostrowski inequality; Milovanović-Pečarić-Fink inequality; Dragomir-Agarwal inequality; Hadamard inequality
@article{CMJ_2003_53_1_a13,
author = {Dedi\'c, Lj. and Pe\v{c}ari\'c, J. and Ujevi\'c, N.},
title = {On generalizations of {Ostrowski} inequality and some related results},
journal = {Czechoslovak Mathematical Journal},
pages = {173--189},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1962007},
zbl = {1013.26020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/}
}
TY - JOUR AU - Dedić, Lj. AU - Pečarić, J. AU - Ujević, N. TI - On generalizations of Ostrowski inequality and some related results JO - Czechoslovak Mathematical Journal PY - 2003 SP - 173 EP - 189 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/ LA - en ID - CMJ_2003_53_1_a13 ER -
Dedić, Lj.; Pečarić, J.; Ujević, N. On generalizations of Ostrowski inequality and some related results. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 173-189. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/
[1] A. Ostrowski: Über die Absolutabweichung einer differentierbaren Funktionen von ihren Integralmittelwort. Comment. Math. Helv. 10 (1938), 226–227. | DOI | MR
[2] D. S. Mitrinović, J. Pečarić and A. M. Fink: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acad. Publ., Dordrecht, 1991. | MR
[3] G. V. Milovanović and J. E. Pečarić: On generalizations of the inequality of A. Ostrowski and some related applications. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No 544–No 576 (1976), 155–158. | MR
[4] A. M. Fink: Bounds of the derivation of a function from its avereges. Czechoslovak Math. J. 42(117) (1992), 289–310. | MR
[5] S. S. Dragomir and S. Wang: A new inequality of Ostrowski’s type in $L_1$-norm and applications to some special means and to some numerical quadrature rules. Thamkang J. Math. 28 (1997), 239–244. | MR
[6] S. S. Dragomir and S. Wang: A new inequality of Ostrowski’s type in $L_p$-norm and applications to some special means and to some numerical quadrature rules. Thamkang J. Math (to appear). | MR
[7] M. Matić and J. Pečarić and N. Ujević: On new estimation of the remainder in generalized Taylor’s formula. Math. Inequal. Appl. 2 (1999), 343–361.
[8] S. S. Dragomir and R. P. Agarwal: The inequalities for differential mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11 (1998), 91–95. | DOI | MR
[9] C. E. M. Pearce and J. Pečarić: Inequalities for differential mappings with applications to special means and quadrature formulas. Appl. Math. Lett 13 (2000), 51–55. | DOI | MR
[10] Handbook of mathematical functions with formulae, graphs and mathematical tables. National Bureau of Standards, Applied Math. Series 55, 4th printing. M. Abramowitz, I. A. Stegun (eds.), Washington, 1965. | MR