On generalizations of Ostrowski inequality and some related results
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 173-189 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some generalizations of the Ostrowski inequality, the Milovanović-Pečarić-Fink inequality, the Dragomir-Agarwal inequality and the Hadamard inequality are given.
Some generalizations of the Ostrowski inequality, the Milovanović-Pečarić-Fink inequality, the Dragomir-Agarwal inequality and the Hadamard inequality are given.
Classification : 26D10, 26D15
Keywords: Ostrowski inequality; Milovanović-Pečarić-Fink inequality; Dragomir-Agarwal inequality; Hadamard inequality
@article{CMJ_2003_53_1_a13,
     author = {Dedi\'c, Lj. and Pe\v{c}ari\'c, J. and Ujevi\'c, N.},
     title = {On generalizations of {Ostrowski} inequality and some related results},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--189},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1962007},
     zbl = {1013.26020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/}
}
TY  - JOUR
AU  - Dedić, Lj.
AU  - Pečarić, J.
AU  - Ujević, N.
TI  - On generalizations of Ostrowski inequality and some related results
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 173
EP  - 189
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/
LA  - en
ID  - CMJ_2003_53_1_a13
ER  - 
%0 Journal Article
%A Dedić, Lj.
%A Pečarić, J.
%A Ujević, N.
%T On generalizations of Ostrowski inequality and some related results
%J Czechoslovak Mathematical Journal
%D 2003
%P 173-189
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/
%G en
%F CMJ_2003_53_1_a13
Dedić, Lj.; Pečarić, J.; Ujević, N. On generalizations of Ostrowski inequality and some related results. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 173-189. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a13/

[1] A.  Ostrowski: Über die Absolutabweichung einer differentierbaren Funktionen von ihren Integralmittelwort. Comment. Math. Helv. 10 (1938), 226–227. | DOI | MR

[2] D. S.  Mitrinović, J.  Pečarić and A. M.  Fink: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acad. Publ., Dordrecht, 1991. | MR

[3] G. V.  Milovanović and J. E.  Pečarić: On generalizations of the inequality of A.  Ostrowski and some related applications. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No 544–No 576 (1976), 155–158. | MR

[4] A. M.  Fink: Bounds of the derivation of a function from its avereges. Czechoslovak Math.  J. 42(117) (1992), 289–310. | MR

[5] S. S.  Dragomir and S.  Wang: A new inequality of Ostrowski’s type in $L_1$-norm and applications to some special means and to some numerical quadrature rules. Thamkang J. Math. 28 (1997), 239–244. | MR

[6] S. S.  Dragomir and S.  Wang: A new inequality of Ostrowski’s type in $L_p$-norm and applications to some special means and to some numerical quadrature rules. Thamkang J.  Math (to appear). | MR

[7] M.  Matić and J.  Pečarić and N.  Ujević: On new estimation of the remainder in generalized Taylor’s formula. Math. Inequal. Appl. 2 (1999), 343–361.

[8] S. S.  Dragomir and R. P.  Agarwal: The inequalities for differential mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11 (1998), 91–95. | DOI | MR

[9] C. E. M.  Pearce and J.  Pečarić: Inequalities for differential mappings with applications to special means and quadrature formulas. Appl. Math. Lett 13 (2000), 51–55. | DOI | MR

[10] Handbook of mathematical functions with formulae, graphs and mathematical tables. National Bureau of Standards, Applied Math. Series  55, 4th printing. M.  Abramowitz, I. A.  Stegun (eds.), Washington, 1965. | MR