Decomposition of complete bipartite even graphs into closed trails
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 127-134 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that any complete bipartite graph $K_{a,b}$, where $a,b$ are even integers, can be decomposed into closed trails with prescribed even lengths.
We prove that any complete bipartite graph $K_{a,b}$, where $a,b$ are even integers, can be decomposed into closed trails with prescribed even lengths.
Classification : 05C70
Keywords: complete bipartite graph; closed trail; arbitrarily decomposable graph
@article{CMJ_2003_53_1_a10,
     author = {Hor\v{n}\'ak, Mirko and Wo\'zniak, Mariusz},
     title = {Decomposition of complete bipartite even graphs into closed trails},
     journal = {Czechoslovak Mathematical Journal},
     pages = {127--134},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1962004},
     zbl = {1010.05054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a10/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Woźniak, Mariusz
TI  - Decomposition of complete bipartite even graphs into closed trails
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 127
EP  - 134
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a10/
LA  - en
ID  - CMJ_2003_53_1_a10
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Woźniak, Mariusz
%T Decomposition of complete bipartite even graphs into closed trails
%J Czechoslovak Mathematical Journal
%D 2003
%P 127-134
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a10/
%G en
%F CMJ_2003_53_1_a10
Horňák, Mirko; Woźniak, Mariusz. Decomposition of complete bipartite even graphs into closed trails. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a10/

[1] P. N.  Balister: Packing circuits into $K_{n}$. (to appear). | Zbl

[2] P. N.  Balister, B.  Bollobás and R. H.  Schelp: Vertex distinguishing colorings of graphs with $\Delta (G)=2$. Discrete Math. 252 (2002), 17–29. | DOI | MR

[3] P. N.  Balister, A.  Kostochka, H.  Li and R. H.  Schelp: Balanced edge colorings. Manuscript, 1999, pp. 16. | MR

[4] C.  Bazgan, A.  Harkat-Benhamdine, H.  Li and M.  Woźniak: On the vertex-distinguishing proper edge-colorings of graphs. J.  Combin. Theory Ser. B 75 (1999), 288–301. | DOI | MR

[5] A. C.  Burris and R. H.  Schelp: Vertex-distinguishing proper edge-colorings. J.  Graph Theory 26 (1997), 73–82. | DOI | MR

[6] J.  Černý, M.  Horňák and R.  Soták: Observability of a graph. Math. Slovaca 46 (1996), 21–31. | MR