Keywords: Carathéodory metric; Kobayashi metric; Azukawa metric; convexifiable point
@article{CMJ_2003_53_1_a0,
author = {Nikolov, Nikolai},
title = {Behavior of invariant metrics near convexifiable boundary points},
journal = {Czechoslovak Mathematical Journal},
pages = {1--7},
year = {2003},
volume = {53},
number = {1},
mrnumber = {1961994},
zbl = {1018.32012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/}
}
Nikolov, Nikolai. Behavior of invariant metrics near convexifiable boundary points. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/
[1] K. Azukawa: The invariant pseudo-metric related to negative plurisubharmonic functions. Kodai Math. J. 10 (1987), 83–92. | DOI | MR | Zbl
[2] D. Coman: Boundary behavior of the pluricomplex Green function. Ark. Mat. 36 (1998), 341–353. | DOI | MR | Zbl
[3] H. Gaussier: Tautness and complete hyperbolicity of domains in $\mathbb{C}^n$. Proc. Amer. Math. Soc. 127 (1999), 105–116. | DOI | MR
[4] I. Graham: Boundary behavior of the Carathédory and Kobayashi metrics on strongly pseudoconvex domains in $\mathbb{C}^n$ with smooth boundary. Trans. Amer. Math. Soc. 207 (1975), 219–240. | MR
[5] M. Klimek: Extremal plurisubharmonic function and invariant pseudodistances. Bull. Soc. Math. France 113 (1985), 231–240. | DOI | MR
[6] J. Kohn: Global regularity for $\bar{\partial }\Re $ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181 (1973), 273–292. | MR
[7] L. Lempert: Holomorphic retracts and intrinsic metrics in convex domains. Analysis Mathematica 8 (1982), 257–261. | DOI | MR | Zbl
[8] N. Nikolov: Localization, stability and boundary behavior of the Kobayashi metrics. Preprint ESI 790, Vienna, 1999, pp. 11. | MR
[9] N. Sibony: Une classe de domaines pseudoconvexes. Duke Math. J. 55 (1987), 299–319. | DOI | MR | Zbl