Behavior of invariant metrics near convexifiable boundary points
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 1-7 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The behaviour of the Carathéodory, Kobayashi and Azukawa metrics near convex boundary points of domains in $\mathbb{C}^n$ is studied.
The behaviour of the Carathéodory, Kobayashi and Azukawa metrics near convex boundary points of domains in $\mathbb{C}^n$ is studied.
Classification : 32F45
Keywords: Carathéodory metric; Kobayashi metric; Azukawa metric; convexifiable point
@article{CMJ_2003_53_1_a0,
     author = {Nikolov, Nikolai},
     title = {Behavior of invariant metrics near convexifiable boundary points},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--7},
     year = {2003},
     volume = {53},
     number = {1},
     mrnumber = {1961994},
     zbl = {1018.32012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/}
}
TY  - JOUR
AU  - Nikolov, Nikolai
TI  - Behavior of invariant metrics near convexifiable boundary points
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1
EP  - 7
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/
LA  - en
ID  - CMJ_2003_53_1_a0
ER  - 
%0 Journal Article
%A Nikolov, Nikolai
%T Behavior of invariant metrics near convexifiable boundary points
%J Czechoslovak Mathematical Journal
%D 2003
%P 1-7
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/
%G en
%F CMJ_2003_53_1_a0
Nikolov, Nikolai. Behavior of invariant metrics near convexifiable boundary points. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMJ_2003_53_1_a0/

[1] K. Azukawa: The invariant pseudo-metric related to negative plurisubharmonic functions. Kodai Math.  J. 10 (1987), 83–92. | DOI | MR | Zbl

[2] D. Coman: Boundary behavior of the pluricomplex Green function. Ark. Mat. 36 (1998), 341–353. | DOI | MR | Zbl

[3] H.  Gaussier: Tautness and complete hyperbolicity of domains in $\mathbb{C}^n$. Proc. Amer. Math. Soc. 127 (1999), 105–116. | DOI | MR

[4] I.  Graham: Boundary behavior of the Carathédory and Kobayashi metrics on strongly pseudoconvex domains in $\mathbb{C}^n$ with smooth boundary. Trans. Amer. Math. Soc. 207 (1975), 219–240. | MR

[5] M.  Klimek: Extremal plurisubharmonic function and invariant pseudodistances. Bull. Soc. Math. France 113 (1985), 231–240. | DOI | MR

[6] J.  Kohn: Global regularity for $\bar{\partial }\Re $ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181 (1973), 273–292. | MR

[7] L.  Lempert: Holomorphic retracts and intrinsic metrics in convex domains. Analysis Mathematica 8 (1982), 257–261. | DOI | MR | Zbl

[8] N.  Nikolov: Localization, stability and boundary behavior of the Kobayashi metrics. Preprint ESI 790, Vienna, 1999, pp. 11. | MR

[9] N.  Sibony: Une classe de domaines pseudoconvexes. Duke Math.  J. 55 (1987), 299–319. | DOI | MR | Zbl