A note on semilocal group rings
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 749-755 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
Classification : 16L30, 16S34, 20C07
Keywords: semilocal; group ring
@article{CMJ_2002_52_4_a7,
     author = {Chin, Angelina Y. M.},
     title = {A note on semilocal group rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {749--755},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940056},
     zbl = {1014.16028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/}
}
TY  - JOUR
AU  - Chin, Angelina Y. M.
TI  - A note on semilocal group rings
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 749
EP  - 755
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/
LA  - en
ID  - CMJ_2002_52_4_a7
ER  - 
%0 Journal Article
%A Chin, Angelina Y. M.
%T A note on semilocal group rings
%J Czechoslovak Mathematical Journal
%D 2002
%P 749-755
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/
%G en
%F CMJ_2002_52_4_a7
Chin, Angelina Y. M. A note on semilocal group rings. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 749-755. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/

[1] M. Auslander: On regular group rings. Proc. Amer. Math. Soc. 8 (1957), 658–664. | DOI | MR | Zbl

[2] I. G. Connell: On the group ring. Canad. J.  Math. 15 (1963), 650–685. | DOI | MR | Zbl

[3] J. M.  Goursaud: Sur les anneaux de groupes semi-parfaits. Canad. J.  Math. 25 (1973), 922–928. | DOI | MR | Zbl

[4] K.  Gulliksen, P.  Ribenboim and T. M.  Viswanathan: An elementary note on group rings. J.  Reine Angew. Math. 242 (1970), 148–162. | MR

[5] J. Lambek: Lectures on Rings and Modules. Blaisdell, Waltham, Mass., 1966. | MR | Zbl

[6] J.  Lawrence: Semilocal group rings and tensor products. Michigan Math.  J. 22 (1975), 309–313. | MR

[7] D. S.  Passman: Advances in group rings. Israel J.  Math. 19 (1974), 67–107. | DOI | MR

[8] G.  Renault: Sur les anneaux de groupes. C.  R.  Acad. Sci. Paris Ser.  A 273 (1971), 84–87. | MR | Zbl

[9] S. M. Woods: Some results on semi-perfect group rings. Canad. J.  Math. 28 (1974), 121–129. | MR | Zbl