A note on semilocal group rings
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 749-755
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
@article{CMJ_2002_52_4_a7,
author = {Chin, Angelina Y. M.},
title = {A note on semilocal group rings},
journal = {Czechoslovak Mathematical Journal},
pages = {749--755},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940056},
zbl = {1014.16028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/}
}
Chin, Angelina Y. M. A note on semilocal group rings. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 749-755. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a7/