Chebyshev centers in hyperplanes of $c_0$
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 721-729 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a full characterization of the closed one-codimensional subspaces of $c_0$, in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented.
We give a full characterization of the closed one-codimensional subspaces of $c_0$, in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented.
Classification : 41A65, 46B20, 46B25
Keywords: Chebyshev centers; proximinal hyperplanes; space $c_0$
@article{CMJ_2002_52_4_a4,
     author = {Vesel\'y, Libor},
     title = {Chebyshev centers in hyperplanes of $c_0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {721--729},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940053},
     zbl = {1012.41029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/}
}
TY  - JOUR
AU  - Veselý, Libor
TI  - Chebyshev centers in hyperplanes of $c_0$
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 721
EP  - 729
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/
LA  - en
ID  - CMJ_2002_52_4_a4
ER  - 
%0 Journal Article
%A Veselý, Libor
%T Chebyshev centers in hyperplanes of $c_0$
%J Czechoslovak Mathematical Journal
%D 2002
%P 721-729
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/
%G en
%F CMJ_2002_52_4_a4
Veselý, Libor. Chebyshev centers in hyperplanes of $c_0$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 721-729. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/

[1] D. Amir: Best simultaneous approximation (Chebyshev centers). Parametric Optimization and Approximation (Oberwolfach 1983), Internat. Ser. Numer. Math. 72, B. Brosowski, F. Deutsch (eds.), Birkhauser-Verlag, Basel, 1985, pp. 19–35. | MR | Zbl

[2] D. Amir and J. Mach: Chebyshev centers in normed spaces. J.  Approx. Theory 40 (1984), 364–374. | DOI | MR

[3] D.  Amir, J.  Mach and K. Saatkamp: Existence of Chebyshev centers, best $n$-nets and best compact approximants. Trans. Amer. Math. Soc. 271 (1982), 513–524. | MR

[4] J.  Blatter and E. W.  Cheney: Minimal projections on hyperplanes in sequence spaces. Ann. Mat. Pura. Appl.  101 (1974), 215–227. | DOI | MR

[5] A. L.  Garkavi: The best possible net and the best possible cross section of a set in a normed space. Izv. Akad. Nauk. SSSR 26 (1962), 87–106. (Russian) | MR | Zbl

[6] R. B. Holmes: A Course in Optimization and Best Approximation. Lecture Notes in Math. 257. Springer-Verlag, 1972. | MR

[7] L. Veselý: Generalized centers of finite sets in Banach spaces. Acta Math. Univ. Comenian. 66 (1997), 83–115. | MR

[8] L.  Veselý: A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers. Arch. Math (to appear). | MR

[9] V. N. Zamjatin: The Chebyshev center in hyperspaces of continuous functions. Funktsional’nyj Analiz, vol. 12, A. V. Štraus (ed.), Ul’janovsk. Gos. Ped. Inst., Ul’janovsk, 1979, pp. 56–68. (Russian) | MR