Keywords: Chebyshev centers; proximinal hyperplanes; space $c_0$
@article{CMJ_2002_52_4_a4,
author = {Vesel\'y, Libor},
title = {Chebyshev centers in hyperplanes of $c_0$},
journal = {Czechoslovak Mathematical Journal},
pages = {721--729},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940053},
zbl = {1012.41029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/}
}
Veselý, Libor. Chebyshev centers in hyperplanes of $c_0$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 721-729. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a4/
[1] D. Amir: Best simultaneous approximation (Chebyshev centers). Parametric Optimization and Approximation (Oberwolfach 1983), Internat. Ser. Numer. Math. 72, B. Brosowski, F. Deutsch (eds.), Birkhauser-Verlag, Basel, 1985, pp. 19–35. | MR | Zbl
[2] D. Amir and J. Mach: Chebyshev centers in normed spaces. J. Approx. Theory 40 (1984), 364–374. | DOI | MR
[3] D. Amir, J. Mach and K. Saatkamp: Existence of Chebyshev centers, best $n$-nets and best compact approximants. Trans. Amer. Math. Soc. 271 (1982), 513–524. | MR
[4] J. Blatter and E. W. Cheney: Minimal projections on hyperplanes in sequence spaces. Ann. Mat. Pura. Appl. 101 (1974), 215–227. | DOI | MR
[5] A. L. Garkavi: The best possible net and the best possible cross section of a set in a normed space. Izv. Akad. Nauk. SSSR 26 (1962), 87–106. (Russian) | MR | Zbl
[6] R. B. Holmes: A Course in Optimization and Best Approximation. Lecture Notes in Math. 257. Springer-Verlag, 1972. | MR
[7] L. Veselý: Generalized centers of finite sets in Banach spaces. Acta Math. Univ. Comenian. 66 (1997), 83–115. | MR
[8] L. Veselý: A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers. Arch. Math (to appear). | MR
[9] V. N. Zamjatin: The Chebyshev center in hyperspaces of continuous functions. Funktsional’nyj Analiz, vol. 12, A. V. Štraus (ed.), Ul’janovsk. Gos. Ped. Inst., Ul’janovsk, 1979, pp. 56–68. (Russian) | MR