Note on a variation of the Schröder-Bernstein problem for fields
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 717-720
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note we study fields $F$ with the property that the simple transcendental extension $F(u)$ of $F$ is isomorphic to some subfield of $F$ but not isomorphic to $F$. Such a field provides one type of solution of the Schröder-Bernstein problem for fields.
In this note we study fields $F$ with the property that the simple transcendental extension $F(u)$ of $F$ is isomorphic to some subfield of $F$ but not isomorphic to $F$. Such a field provides one type of solution of the Schröder-Bernstein problem for fields.
Classification :
12E99, 12F05, 12F20
Keywords: field; subfield; isomorphism; transcendental extension; algebraic extension
Keywords: field; subfield; isomorphism; transcendental extension; algebraic extension
@article{CMJ_2002_52_4_a3,
author = {Cater, F. S.},
title = {Note on a variation of the {Schr\"oder-Bernstein} problem for fields},
journal = {Czechoslovak Mathematical Journal},
pages = {717--720},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940052},
zbl = {1011.12002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a3/}
}
Cater, F. S. Note on a variation of the Schröder-Bernstein problem for fields. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 717-720. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a3/