Connections of higher order and product preserving functors
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 889-896 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider a product preserving functor $\mathcal F$ of order $r$ and a connection $\Gamma $ of order $r$ on a manifold $M$. We introduce horizontal lifts of tensor fields and linear connections from $M$ to $\mathcal F(M)$ with respect to $\Gamma $. Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.
In this paper we consider a product preserving functor $\mathcal F$ of order $r$ and a connection $\Gamma $ of order $r$ on a manifold $M$. We introduce horizontal lifts of tensor fields and linear connections from $M$ to $\mathcal F(M)$ with respect to $\Gamma $. Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.
Classification : 53C05, 58A20, 58A32
Keywords: connections of higher order; product preserving functors; lifts of tensors and connections
@article{CMJ_2002_52_4_a19,
     author = {Gancarzewicz, Jacek and Rahmani, Noureddine and Salgado, Modesto},
     title = {Connections of higher order and product preserving functors},
     journal = {Czechoslovak Mathematical Journal},
     pages = {889--896},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940068},
     zbl = {1020.53012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a19/}
}
TY  - JOUR
AU  - Gancarzewicz, Jacek
AU  - Rahmani, Noureddine
AU  - Salgado, Modesto
TI  - Connections of higher order and product preserving functors
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 889
EP  - 896
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a19/
LA  - en
ID  - CMJ_2002_52_4_a19
ER  - 
%0 Journal Article
%A Gancarzewicz, Jacek
%A Rahmani, Noureddine
%A Salgado, Modesto
%T Connections of higher order and product preserving functors
%J Czechoslovak Mathematical Journal
%D 2002
%P 889-896
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a19/
%G en
%F CMJ_2002_52_4_a19
Gancarzewicz, Jacek; Rahmani, Noureddine; Salgado, Modesto. Connections of higher order and product preserving functors. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 889-896. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a19/

[1] L.  Cordero, C. T. J. Dodson and N.  de León: Differential Geometry of Frame Bundles. Kluwer Acad. Publ., Dordrecht, 1988.

[2] J.  Gancarzewicz: Connections of order  $r$. Ann. Polon. Math. 34 (1977), 69–83. | DOI | MR | Zbl

[3] J.  Gancarzewicz, S. Mahi and N.  Rahmani: Horizontal lift of tensor fields of type $(1,1)$ from a manifold to its tangent bundle of higher order. Rend. Circ. Mat. Palermo Suppl. 14 (1987), 43–59. | MR

[4] J.  Gancarzewicz, W.  Mikulski and Z. Pogoda: Lifts of tensor fields and linear connections to a product preserving functor. Nagoya Math.  J. 135 (1994), 1–41. | DOI | MR

[5] J.  Gancarzewicz and M.  Salgado: Horizontal lifts of tensor fields to the tangent bundle of higher order. Rend. Circ. Mat. Palermo Suppl. 21 (1989), 151–178. | MR

[6] J.  Gancarzewicz and M.  Salgado: Connections of higher order and product preserving functors. IMUJ Preprint no 1997/21, e.-publ. http://www/im.uj.edu.pl

[7] I.  Kolář, P.  Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR

[8] R.  Palais and C.-L.  Terng: Natural bundles have a finite order. Topology 16 (1977), 271–277. | DOI | MR

[9] K.  Yano and S.  Ishihara: Horizontal lifts from manifolds to its tangent bundle. J.  Math. Mech. 16 (1967), 1015–1030. | MR

[10] K.  Yano and S.  Ishihara: Tangent and Cotangent Bundles: Differential Geometry. Marcel Dekker, New York, 1973. | MR