On orthogonally $\sigma$-complete lattice ordered groups
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 881-888 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups.
In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups.
Classification : 06F15, 20F60
Keywords: lattice ordered group; orthogonal $\sigma $-completeness; direct factor
@article{CMJ_2002_52_4_a18,
     author = {Jakub{\'\i}k, J\'an},
     title = {On orthogonally $\sigma$-complete lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {881--888},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940067},
     zbl = {1012.06019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On orthogonally $\sigma$-complete lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 881
EP  - 888
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/
LA  - en
ID  - CMJ_2002_52_4_a18
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On orthogonally $\sigma$-complete lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2002
%P 881-888
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/
%G en
%F CMJ_2002_52_4_a18
Jakubík, Ján. On orthogonally $\sigma$-complete lattice ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 881-888. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/

[1] J.  Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85–98. | DOI | MR

[2] J.  Jakubík: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math.  J. 22(97) (1972), 159–175. | MR

[3] J.  Jakubík: On complete lattice ordered groups with strong units. Czechoslovak Math.  J. 46(121) (1996), 221–230. | MR

[4] J.  Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math.  J. 49(124) (1999), 517–526. | DOI | MR

[5] J.  Jakubík: Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49–56. | MR

[6] R.  Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Coll. Mat. 1 (1948), 140–144. | MR

[7] R.  Sikorski: Boolean algebras. Second edition, Springer Verlag, Berlin, 1964. | MR | Zbl

[8] F.  Šik: To the theory of lattice ordered groups. Czechoslovak Math.  J. 6(81) (1956), 1–25. (Russian)

[9] A.  De  Simone, D.  Mundici and M.  Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. (Preprint).

[10] A.  Tarski: Cardinal Algebras. Oxford University Press, New York, London, 1949. | MR | Zbl