Keywords: lattice ordered group; orthogonal $\sigma $-completeness; direct factor
@article{CMJ_2002_52_4_a18,
author = {Jakub{\'\i}k, J\'an},
title = {On orthogonally $\sigma$-complete lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {881--888},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940067},
zbl = {1012.06019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/}
}
Jakubík, Ján. On orthogonally $\sigma$-complete lattice ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 881-888. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a18/
[1] J. Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85–98. | DOI | MR
[2] J. Jakubík: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22(97) (1972), 159–175. | MR
[3] J. Jakubík: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46(121) (1996), 221–230. | MR
[4] J. Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49(124) (1999), 517–526. | DOI | MR
[5] J. Jakubík: Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49–56. | MR
[6] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Coll. Mat. 1 (1948), 140–144. | MR
[7] R. Sikorski: Boolean algebras. Second edition, Springer Verlag, Berlin, 1964. | MR | Zbl
[8] F. Šik: To the theory of lattice ordered groups. Czechoslovak Math. J. 6(81) (1956), 1–25. (Russian)
[9] A. De Simone, D. Mundici and M. Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. (Preprint).
[10] A. Tarski: Cardinal Algebras. Oxford University Press, New York, London, 1949. | MR | Zbl