Keywords: $MV$-algebra; bold algebra; field of sets; Łukasiewicz tribe; sequential convergence; sequential continuity; measure; extension of measures; sequential envelope; absolute sequentially closed bold algebra; epireflective subcategory
@article{CMJ_2002_52_4_a16,
author = {Fri\v{c}, Roman},
title = {{\L}ukasiewicz tribes are absolutely sequentially closed bold algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {861--874},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940065},
zbl = {1016.28013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a16/}
}
Frič, Roman. Łukasiewicz tribes are absolutely sequentially closed bold algebras. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 861-874. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a16/
[1] L. P. Belluce: Semisimple algebras of infinite valued logics. Canad. J. Math. 38 (1986), 1356–1379. | DOI | MR
[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000. | MR
[3] A. Dvurečenskij: Loomis-Sikorski theorem for $\sigma $-complete $MV$-algebras and $l$-groups. Austral. Math. Soc. J. Ser. A 68 (2000), 261–277. | DOI | MR
[4] R. Frič: A Stone-type duality and its applications to probability. In: Proceedings of the 12th Summer Conference on General Topology and its Applications, North Bay, August 1997, 1999, pp. 125–137. | MR
[5] R. Frič: Boolean algebras: convergence and measure. Topology Appl. 111 (2001), 139–149. | DOI | MR
[6] H. Herrlich and G. E. Strecker: Category theory. Second edition. Heldermann Verlag, Berlin, 1976. | MR
[7] J. Jakubík: Sequential convergences on $MV$-algebras. Czechoslovak Math. J. 45(120) (1995), 709–726. | MR
[8] M. Jurečková: The measure extension theorem on $MV$-algebras. Tatra Mt. Math. Publ. 6 (1995), 55–61. | MR
[9] E. P. Klement: Characterization of finite fuzzy measures using Markoff-kernels. J. Math. Anal. Appl. 75 (1980), 330–339. | DOI | MR | Zbl
[10] E. P. Klement and M. Navara: A characterization of tribes with respect to the Łukasiewicz $t$-norm. Czechoslovak Math. J. 47(122) (1997), 689–700. | DOI | MR
[11] F. Kôpka and F. Chovanec: $D$-posets. Math. Slovaca 44 (1994), 21–34. | MR
[12] P. Kratochvíl: Multisequences and measure. In: General Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976), Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha, 1977, pp. 237–244. | MR
[13] R. Mesiar: Fuzzy sets and probability theory. Tatra Mt. Math. Publ. 1 (1992), 105–123. | MR | Zbl
[14] J. Novák: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen. Czechoslovak Math. J. 8(83) (1958), 344–355. | MR
[15] J. Novák: On the sequential envelope. In: General Topology and its Relation to Modern Analysis and Algebra (I) (Proc. (First) Prague Topological Sympos., 1961), Publishing House of the Czechoslovak Academy of Sciences, Praha, 1962, pp. 292–294. | MR
[16] J. Novák: On convergence spaces and their seqeuntial envelopes. Czechoslovak Math. J. 15(90) (1965), 74–100. | MR
[17] J. Novák: On sequential envelopes defined by means of certain classes of functions. Czechoslovak Math. J. 18(93) (1968), 450–456. | MR
[18] E. Pap: Null-Additive Set Functions. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 1995. | MR | Zbl
[19] K. Piasecki: Probability fuzzy events defined as denumerable additive measure. Fuzzy Sets and Systems 17 (1985), 271–284. | DOI | MR
[20] P. Pták and S. Pulmannová: Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht, 1991. | MR
[21] B. Riečan and T. Neubrunn: Integral, Measure, and Ordering. Kluwer Acad. Publ., Dordrecht-Boston-London, 1997. | MR