Oscillation and nonoscillation of higher order self-adjoint differential equations
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 833-849 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Oscillation and nonoscillation criteria for the higher order self-adjoint differential equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}+q(t)y=0 \qquad \mathrm{(*)}\] are established. In these criteria, equation $(*)$ is viewed as a perturbation of the conditionally oscillatory equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}- \frac{\mu _{n,\alpha }}{t^{2n-\alpha }}y=0, \] where $\mu _{n,\alpha }$ is the critical constant in conditional oscillation. Some open problems in the theory of conditionally oscillatory, even order, self-adjoint equations are also discussed.
Oscillation and nonoscillation criteria for the higher order self-adjoint differential equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}+q(t)y=0 \qquad \mathrm{(*)}\] are established. In these criteria, equation $(*)$ is viewed as a perturbation of the conditionally oscillatory equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}- \frac{\mu _{n,\alpha }}{t^{2n-\alpha }}y=0, \] where $\mu _{n,\alpha }$ is the critical constant in conditional oscillation. Some open problems in the theory of conditionally oscillatory, even order, self-adjoint equations are also discussed.
Classification : 34B05, 34C10
Keywords: self-adjoint differential equation; oscillation and nonoscillation criteria; variational method; conditional oscillation
@article{CMJ_2002_52_4_a14,
     author = {Do\v{s}l\'y, Ond\v{r}ej and Osi\v{c}ka, Jan},
     title = {Oscillation and nonoscillation of higher order self-adjoint differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {833--849},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940063},
     zbl = {1023.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Osička, Jan
TI  - Oscillation and nonoscillation of higher order self-adjoint differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 833
EP  - 849
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/
LA  - en
ID  - CMJ_2002_52_4_a14
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Osička, Jan
%T Oscillation and nonoscillation of higher order self-adjoint differential equations
%J Czechoslovak Mathematical Journal
%D 2002
%P 833-849
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/
%G en
%F CMJ_2002_52_4_a14
Došlý, Ondřej; Osička, Jan. Oscillation and nonoscillation of higher order self-adjoint differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 833-849. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/

[1] C. D. Ahlbrandt, D. B. Hinton and R. T. Lewis: Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators. Canad. J.  Math. 33 (1981), 229–246. | DOI | MR

[2] C. D.  Ahlbrandt, D. B.  Hinton and R. T.  Lewis: The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J.  Math. Anal. Appl. 81 (1981), 234–277. | DOI | MR

[3] W. A. Coppel: Disconjugacy. Lectures Notes in Mathematics, No. 220. Springer Verlag, Berlin-Heidelberg, 1971. | MR

[4] O.  Došlý: Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119 A (1991), 219–232. | MR

[5] O.  Došlý: Conditionally oscillatory equations and spectral properties of singular differential operators. In: Proc. Conf. Ordinary Diff. Equations, Poprad 1994, pp. 23–31.

[6] O. Došlý: Oscillation criteria for self-adjoint linear differential equations. Math. Nachr. 166 (1994), 141–153. | DOI

[7] O. Došlý: Nehari-type oscillation criteria for self-adjoint linear differential equations. J. Math. Anal. Appl. 182 (1994), 69–89. | DOI | MR

[8] O. Došlý: Oscillation and spectral properties of a class of singular self-adjoint differential operators. Math. Nach. 188 (1997), 49–68. | DOI | MR

[9] O. Došlý: Oscillation and spectral properties of self-adjoint differential operators. Nonlinear Anal. 30 (1997), 1375–1384. | DOI | MR

[10] O. Došlý and F. Fiedler: A remark on Nehari-type criteria for self-adjoint differential equations. Comment. Math. Univ. Carolin. 32 (1991), 447–462. | MR

[11] O. Došlý and J. Komenda: Principal solutions and conjugacy criteria for self-adjoint differential equations. Arch. Math. 31 (1995), 217–238. | MR

[12] O. Došlý and J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math. 2 (1995), 241–258. | MR

[13] F. Fiedler: Oscillation criteria for a class of $2n$-order ordinary differential operators. J. Differential Equations 42 (1982), 155–185. | MR

[14] F. Fiedler: Oscillation criteria for a special class of $2n$-order ordinary differential equations. Math. Nachr. 131 (1987), 205–218. | DOI | MR | Zbl

[15] I. M.  Glazman: Direct Methods of Qualitative Analysis of Singular Differential Operators. Davey, Jerusalem, 1965.

[16] D. B. Hinton and R. T. Lewis: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. | DOI | MR

[17] D. B.  Hinton and R. T.  Lewis: Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh 84A (1979), 117–134. | MR

[18] W. Kratz: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin, 1995. | MR | Zbl

[19] W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin, 1980. | MR | Zbl