Keywords: self-adjoint differential equation; oscillation and nonoscillation criteria; variational method; conditional oscillation
@article{CMJ_2002_52_4_a14,
author = {Do\v{s}l\'y, Ond\v{r}ej and Osi\v{c}ka, Jan},
title = {Oscillation and nonoscillation of higher order self-adjoint differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {833--849},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940063},
zbl = {1023.34028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/}
}
TY - JOUR AU - Došlý, Ondřej AU - Osička, Jan TI - Oscillation and nonoscillation of higher order self-adjoint differential equations JO - Czechoslovak Mathematical Journal PY - 2002 SP - 833 EP - 849 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/ LA - en ID - CMJ_2002_52_4_a14 ER -
Došlý, Ondřej; Osička, Jan. Oscillation and nonoscillation of higher order self-adjoint differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 833-849. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a14/
[1] C. D. Ahlbrandt, D. B. Hinton and R. T. Lewis: Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators. Canad. J. Math. 33 (1981), 229–246. | DOI | MR
[2] C. D. Ahlbrandt, D. B. Hinton and R. T. Lewis: The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234–277. | DOI | MR
[3] W. A. Coppel: Disconjugacy. Lectures Notes in Mathematics, No. 220. Springer Verlag, Berlin-Heidelberg, 1971. | MR
[4] O. Došlý: Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119 A (1991), 219–232. | MR
[5] O. Došlý: Conditionally oscillatory equations and spectral properties of singular differential operators. In: Proc. Conf. Ordinary Diff. Equations, Poprad 1994, pp. 23–31.
[6] O. Došlý: Oscillation criteria for self-adjoint linear differential equations. Math. Nachr. 166 (1994), 141–153. | DOI
[7] O. Došlý: Nehari-type oscillation criteria for self-adjoint linear differential equations. J. Math. Anal. Appl. 182 (1994), 69–89. | DOI | MR
[8] O. Došlý: Oscillation and spectral properties of a class of singular self-adjoint differential operators. Math. Nach. 188 (1997), 49–68. | DOI | MR
[9] O. Došlý: Oscillation and spectral properties of self-adjoint differential operators. Nonlinear Anal. 30 (1997), 1375–1384. | DOI | MR
[10] O. Došlý and F. Fiedler: A remark on Nehari-type criteria for self-adjoint differential equations. Comment. Math. Univ. Carolin. 32 (1991), 447–462. | MR
[11] O. Došlý and J. Komenda: Principal solutions and conjugacy criteria for self-adjoint differential equations. Arch. Math. 31 (1995), 217–238. | MR
[12] O. Došlý and J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math. 2 (1995), 241–258. | MR
[13] F. Fiedler: Oscillation criteria for a class of $2n$-order ordinary differential operators. J. Differential Equations 42 (1982), 155–185. | MR
[14] F. Fiedler: Oscillation criteria for a special class of $2n$-order ordinary differential equations. Math. Nachr. 131 (1987), 205–218. | DOI | MR | Zbl
[15] I. M. Glazman: Direct Methods of Qualitative Analysis of Singular Differential Operators. Davey, Jerusalem, 1965.
[16] D. B. Hinton and R. T. Lewis: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. | DOI | MR
[17] D. B. Hinton and R. T. Lewis: Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh 84A (1979), 117–134. | MR
[18] W. Kratz: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin, 1995. | MR | Zbl
[19] W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin, 1980. | MR | Zbl