Keywords: generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation
@article{CMJ_2002_52_4_a13,
author = {Zhao, Cheng-Dong and He, Qi-Min},
title = {On the center of the generalized {Li\'enard} system},
journal = {Czechoslovak Mathematical Journal},
pages = {817--832},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940062},
zbl = {1021.34023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a13/}
}
Zhao, Cheng-Dong; He, Qi-Min. On the center of the generalized Liénard system. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 817-832. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a13/
[1] Shu-Xiang Yu and Ji-Zhou Zhang: On the center of the Liénard equation. J. Differential Equations 102 (1993), 53–61. | DOI | MR
[2] Yu-Rong Zhou and Xiang-Rong Wang: On the conditions of a center of the Liénard equation. J. Math. Anal. Appl. 100 (1993), 43–59. | DOI | MR
[3] P. J. Ponzo and N. Wax: On periodic solutions of the system $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. J. Differential Equations 10 (1971), 262–269. | DOI | MR
[4] Jitsuro Sugie: The global center for the Liénard system. Nonlinear Anal. 17 (1991), 333–345. | DOI | MR
[5] T. Hara and T. Yoneyama: On the global center of generalized Liénard equation and its application to stability problems. Funkc. Ekvacioj 28 (1985), 171–192. | MR
[6] Lawrence Perko: Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1991. | DOI | MR