Three-variable equations of posets
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 811-816
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We find an independent base for three-variable equations of posets.
We find an independent base for three-variable equations of posets.
@article{CMJ_2002_52_4_a12,
author = {Je\v{z}ek, J.},
title = {Three-variable equations of posets},
journal = {Czechoslovak Mathematical Journal},
pages = {811--816},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940061},
zbl = {1012.06001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a12/}
}
Ježek, J. Three-variable equations of posets. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 811-816. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a12/
[JMMM] J. Ježek, P. Marković, M. Maróti and R. McKenzie: Equations of tournaments are not finitely based. Discrete Math. 211 (2000), 243–248. | DOI | MR
[JMMM2] J. Ježek, P. Marković, M. Maróti and R. McKenzie: The variety generated by tournaments. Acta Univ. Carolin. Math. Phys. 40 (1999), 21–41. | MR
[JM] J. Ježek and R. McKenzie: The variety generated by equivalence algebras. Algebra Universalis 45 (2001), 211–220. | DOI | MR
[MMT] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Volume I. Wadsworth & Brooks/Cole, Monterey, CA, 1987. | MR
[MNP] Vl. Müller, J. Nešetřil and J. Pelant: Either tournaments or algebras? Discrete Math. 11 (1975), 37–66. | DOI | MR