On product $MV$-algebras
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 797-810 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we apply the notion of the product $MV$-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an $MV$-algebra into a product $MV$-algebra. We found sufficient conditions under which any two direct product decompositions of a product $MV$-algebra have isomorphic refinements.
In this paper we apply the notion of the product $MV$-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an $MV$-algebra into a product $MV$-algebra. We found sufficient conditions under which any two direct product decompositions of a product $MV$-algebra have isomorphic refinements.
Classification : 06D35
Keywords: $MV$-algebras; product; convex; embedding; direct; decomposition
@article{CMJ_2002_52_4_a11,
     author = {Jakub{\'\i}k, J\'an},
     title = {On product $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {797--810},
     year = {2002},
     volume = {52},
     number = {4},
     mrnumber = {1940060},
     zbl = {1012.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a11/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On product $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 797
EP  - 810
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a11/
LA  - en
ID  - CMJ_2002_52_4_a11
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On product $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2002
%P 797-810
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a11/
%G en
%F CMJ_2002_52_4_a11
Jakubík, Ján. On product $MV$-algebras. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 797-810. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a11/

[1] G.  Cattaneo and F.  Lombardo: Independent axiomatization for $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232. | MR

[2] R.  Cignoli, I. M. I.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[3] P.  Conrad: Lattice Ordered Groups. Tulane University, 1971. | Zbl

[4] A. Dvurečenskij and A. DiNola: Product $MV$-algebras. Multiple Valued Logic 6 (2001), 193–251. | MR

[5] A.  Dvurečenskij and B.  Riečan: Weakly divisible $MV$-algebras and product. J.  Math. Anal. Appl. 234 (1999), 208–222. | DOI | MR

[6] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964. | MR

[7] D.  Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math.  J. 43(118) (1993), 249–263. | MR | Zbl

[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739. | MR

[9] J.  Jakubík: On complete $MV$-algebras. Czechoslovak Math.  J. 45(120) (1995), 473–480. | MR

[10] D.  Mundici: Interpretation of $AFC^*$-algebra in Łukasiewics sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. | DOI

[11] B.  Riečan: On the product $MV$-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149. | MR