Keywords: weakly compact operator on $C_0(T)$; representing measure; lcHs-valued $\sigma $-additive Baire (or regular Borel; or regular $\sigma $-Borel) measures
@article{CMJ_2002_52_4_a1,
author = {Dobrakov, I. and Panchapagesan, T. V.},
title = {A simple proof of the {Borel} extension theorem and weak compactness of operators},
journal = {Czechoslovak Mathematical Journal},
pages = {691--703},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940050},
zbl = {1023.28005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a1/}
}
TY - JOUR AU - Dobrakov, I. AU - Panchapagesan, T. V. TI - A simple proof of the Borel extension theorem and weak compactness of operators JO - Czechoslovak Mathematical Journal PY - 2002 SP - 691 EP - 703 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a1/ LA - en ID - CMJ_2002_52_4_a1 ER -
Dobrakov, I.; Panchapagesan, T. V. A simple proof of the Borel extension theorem and weak compactness of operators. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 691-703. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a1/
[1] S. K. Berberian: Measure and Integration. Chelsea, New York, 1965. | MR | Zbl
[2] J. Diestel and J. J. Uhl: Vector measures. In Survey, No. 15, Amer. Math. Soc., Providence, 1977. | MR
[3] N. Dinculeanu and I. Kluvánek: On vector measures. Proc. London Math. Soc. 17 (1967), 505–512. | MR
[4] N. Dunford and J. T. Schwartz: Linear Operators, General Theory. Part I. Interscience, New York, 1958.
[5] R. E. Edwards: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York, 1965. | MR | Zbl
[6] A. Grothendieck: Sur les applications linéares faiblement compactes d’espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129–173. | DOI | MR
[7] P. R. Halmos: Measure Theory. Van Nostrand, New York, 1950. | MR | Zbl
[8] I. Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures. Czechoslovak Math. J. 17(92) (1967), 261–277. | MR
[9] C. W. McArthur: On a theorem of Orlicz and Pettis. Pacific J. Math. 22 (1967), 297–302. | MR | Zbl
[10] T. V. Panchapagesan: On complex Radon measures I. Czechoslovak Math. J. 42(117) (1992), 599–612. | MR | Zbl
[11] T. V. Panchapagesan: On complex Radon measures II. Czechoslovak Math. J. 43(118) (1993), 65–82. | MR | Zbl
[12] T. V. Panchapagesan: Applications of a theorem of Grothendieck to vector measures. J. Math. Anal. Appl. 214 (1997), 89–101. | DOI | MR
[13] T. V. Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$. Trans. Amer. Math. Soc. 350 (1998), 4849–4867. | DOI | MR | Zbl
[14] A. Pelczyński: Projections in certain Banach spaces. Studia Math. 19 (1960), 209–228. | DOI | MR
[15] W. Rudin: Functional Analysis. McGraw-Hill, New York, 1973. | MR | Zbl
[16] M. Sion: Outer measures with values in topological groups. Proc. London Math. Soc. 19 (1969), 89–106. | MR
[17] E. Thomas: L’integration par rapport a une mesure de Radon vectorielle. Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. | DOI | MR | Zbl
[18] Ju. B. Tumarkin: On locally convex spaces with basis. Dokl. Akad. Nauk. SSSR 11 (1970), 1672–1675. | MR | Zbl
[19] H. Weber: Fortsetzung von Massen mit Werten in uniformen Halbgruppen. Arch. Math. XXVII (1976), 412–423. | DOI | MR | Zbl