Keywords: nonlinear functional differential equation; initial value problem; non–Volterra’s type operator
@article{CMJ_2002_52_4_a0,
author = {Bravyi, E. and Hakl, R. and Lomtatidze, A.},
title = {On {Cauchy} problem for first order nonlinear functional differential equations of {non-Volterra{\textquoteright}s} type},
journal = {Czechoslovak Mathematical Journal},
pages = {673--690},
year = {2002},
volume = {52},
number = {4},
mrnumber = {1940049},
zbl = {1023.34054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a0/}
}
TY - JOUR AU - Bravyi, E. AU - Hakl, R. AU - Lomtatidze, A. TI - On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type JO - Czechoslovak Mathematical Journal PY - 2002 SP - 673 EP - 690 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a0/ LA - en ID - CMJ_2002_52_4_a0 ER -
%0 Journal Article %A Bravyi, E. %A Hakl, R. %A Lomtatidze, A. %T On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type %J Czechoslovak Mathematical Journal %D 2002 %P 673-690 %V 52 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a0/ %G en %F CMJ_2002_52_4_a0
Bravyi, E.; Hakl, R.; Lomtatidze, A. On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 673-690. http://geodesic.mathdoc.fr/item/CMJ_2002_52_4_a0/
[1] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations. Nauka, Moscow, 1991. (Russian) | MR
[2] S. R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems. Academic Press Inc., New York and London, 1974. | MR
[3] J. Blaz: Sur l’existence et l’unicité de la solution d’une equation differentielle á argument retardé. Ann. Polon. Math. 15 (1964), 9–14. | DOI | MR | Zbl
[4] E. Bravyi, R. Hakl and A. Lomtatidze: Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations. Czechoslovak Math. J 52(127) (2002), 513–530. | DOI | MR
[5] R. D. Driver: Existence theory for a delay-differential system. Contrib. Diff. Equations 1 (1963), 317–336. | MR | Zbl
[6] J. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York-Heidelberg-Berlin, 1977. | MR | Zbl
[7] Sh. Gelashvili and I. Kiguradze: On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differential Equations Math. Phys. 5 (1995), 1–113. | MR
[8] I. Kiguradze and B. Půža: On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47(122) (1997), 341–373. | DOI | MR
[9] I. Kiguradze and B. Půža: On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106–113. | MR
[10] I. Kiguradze and Z. Sokhadze: Concerning the uniqueness of solution of the Cauchy problem for functional differential equations. Differentsial’nye Uravneniya 31 (1995), 1977–1988. (Russian) | MR
[11] I. Kiguradze and Z. Sokhadze: Existence and continuability of solutions of the initial value problem for the system of singular functional differential equations. Mem. Differential Equations Math. Phys. 5 (1995), 127–130.
[12] I. Kiguradze and Z. Sokhadze: On the Cauchy problem for singular evolution functional differential equations. Differentsial’nye Uravneniya 33 (1997), 48–59. (Russian) | MR
[13] I. Kiguradze and Z. Sokhadze: On singular functional differential inequalities. Georgian Math. J. 4 (1997), 259–278. | DOI | MR
[14] I. Kiguradze and Z. Sokhadze: On global solvability of the Cauchy problem for singular functional differential equations. Georgian Math. J. 4 (1997), 355–372. | DOI | MR
[15] I. Kiguradze and Z. Sokhadze: On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations. Fasc. Math. (1998), 71–92. | MR
[16] V. Lakshmikantham: Lyapunov function and a basic inequality in delay-differential equations. Arch. Rational Mech. Anal. 10 (1962), 305–310. | DOI | MR | Zbl
[17] A. I. Logunov and Z. B. Tsalyuk: On the uniqueness of solution of Volterra type integral equations with retarded argument. Mat. Sb. 67 (1965), 303–309. (Russian) | MR
[18] W. L. Miranker: Existence, uniqueness and stability of solutions of systems of nonlinear difference-differential equations. J. Math. Mech. 11 (1962), 101–107. | MR | Zbl
[19] A. D. Myshkis: General theory of differential equations with retarded argument. Uspekhi Mat. Nauk 4 (1949), 99–141. (Russian) | MR
[20] A. D. Myshkis and L. E. Elsgolts: State and problems of theory of differential equations with deviated argument. Uspekhi Mat. Nauk 22 (1967), 21–57. (Russian)
[21] A. D. Myshkis and Z. B. Tsalyuk: On nonlocal continuability of solutions to differential equaitons with retarded argument. Differentsial’nye Uravneniya 5 (1969), 1128–1130. (Russian) | MR
[22] W. Rzymowski: Delay effects on the existence problems for differential equations in Banach space. J. Differential Equations 32 (1979), 91–100. | DOI | MR | Zbl
[23] Š. Schwabik, M. Tvrdý and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia, Praha, 1979. | MR
[24] Z. Sokhadze: On a theorem of Myshkis-Tsalyuk. Mem. Differential Equations Math. Phys. 5 (1995), 131–132. | Zbl