Functional differential equations
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
Classification : 34A45, 34K05, 34K07, 34K28
Keywords: quasilinearization; monotone iterations; superlinear convergence
@article{CMJ_2002_52_3_a9,
     author = {Jankowski, Tadeusz},
     title = {Functional differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {553--563},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923261},
     zbl = {1023.34070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/}
}
TY  - JOUR
AU  - Jankowski, Tadeusz
TI  - Functional differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 553
EP  - 563
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/
LA  - en
ID  - CMJ_2002_52_3_a9
ER  - 
%0 Journal Article
%A Jankowski, Tadeusz
%T Functional differential equations
%J Czechoslovak Mathematical Journal
%D 2002
%P 553-563
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/
%G en
%F CMJ_2002_52_3_a9
Jankowski, Tadeusz. Functional differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/

[1] R. Bellman: Methods of Nonlinear Analysis, Vol. I. Academic Press, New York, 1973. | MR

[2] R. Bellman and R. Kalaba: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965. | MR

[3] J. K. Hale and S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York, Berlin, 1993. | MR

[4] T. Jankowski and F. A. McRae: An extension of the method of quasilinearization for differential problems with a parameter. Nonlinear Stud. 6 (1999), 21–44. | MR

[5] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. | MR

[6] V. Lakshmikantham, S. Leela and S. Sivasundaram: Extensions of the method of quasilinearization. J.  Optim. Theory Appl. 87 (1995), 379–401. | DOI | MR

[7] V. Lakshmikantham and A. S. Vatsala: Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publishers, Dordrecht-Boston-London, 1998. | MR