Keywords: quasilinearization; monotone iterations; superlinear convergence
@article{CMJ_2002_52_3_a9,
author = {Jankowski, Tadeusz},
title = {Functional differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {553--563},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923261},
zbl = {1023.34070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/}
}
Jankowski, Tadeusz. Functional differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a9/
[1] R. Bellman: Methods of Nonlinear Analysis, Vol. I. Academic Press, New York, 1973. | MR
[2] R. Bellman and R. Kalaba: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965. | MR
[3] J. K. Hale and S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, New York, Berlin, 1993. | MR
[4] T. Jankowski and F. A. McRae: An extension of the method of quasilinearization for differential problems with a parameter. Nonlinear Stud. 6 (1999), 21–44. | MR
[5] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. | MR
[6] V. Lakshmikantham, S. Leela and S. Sivasundaram: Extensions of the method of quasilinearization. J. Optim. Theory Appl. 87 (1995), 379–401. | DOI | MR
[7] V. Lakshmikantham and A. S. Vatsala: Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publishers, Dordrecht-Boston-London, 1998. | MR