A family of noetherian rings with their finite length modules under control
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 545-552 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $.
We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $.
Classification : 16D50, 16D60, 16D90, 16G10, 16G20, 16G60, 16G70, 16P40
Keywords: V-ring; progenerator; almost split morphisms
@article{CMJ_2002_52_3_a8,
     author = {Schmidmeier, Markus},
     title = {A family of noetherian rings with their finite length modules under control},
     journal = {Czechoslovak Mathematical Journal},
     pages = {545--552},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923260},
     zbl = {1014.16014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a8/}
}
TY  - JOUR
AU  - Schmidmeier, Markus
TI  - A family of noetherian rings with their finite length modules under control
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 545
EP  - 552
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a8/
LA  - en
ID  - CMJ_2002_52_3_a8
ER  - 
%0 Journal Article
%A Schmidmeier, Markus
%T A family of noetherian rings with their finite length modules under control
%J Czechoslovak Mathematical Journal
%D 2002
%P 545-552
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a8/
%G en
%F CMJ_2002_52_3_a8
Schmidmeier, Markus. A family of noetherian rings with their finite length modules under control. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 545-552. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a8/

[1] M. Auslander: A survey of existence theorems for almost split sequences. Representation theory of algebras. Proc. Symp. Durham  1985, London Math. Soc. Lecture Notes Series Vol.  116, Cambridge, 1986, pp. 81–89. | MR | Zbl

[2] M. Auslander, I. Reiten and S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol.  36. Cambridge, 1995. | MR

[3] J. H. Cozzens: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76 (1970), 75–79. | DOI | MR | Zbl

[4] C. Faith: Algebra: Rings, Modules and Categories I. Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973. | MR | Zbl

[5] K. R. Fuller: Density and equivalences. J. Algebra 29 (1974), 528–550. | MR

[6] K. R. Fuller: $*$-modules over ring extensions. Comm. Algebra 25 (1997), 2839–2860. | DOI | MR

[7] Chr. Kassel: Quantum Groups. Graduate Texts in Mathematics Vol.  155. Springer, Berlin, Heidelberg, New York, 1995. | MR

[8] B. L. Osofsky: On twisted polynomial rings. J. Algebra 18 (1971), 597–607. | MR | Zbl

[9] C. M. Ringel: The representation type of local algebras. Proc. Conf. Ottawa  1974, Lect. Notes Math. Vol. 488, 1975, pp. 282–305. | MR | Zbl

[10] R. Wisbauer: Grundlagen der Modul- und Ringtheorie. Verlag Reinhard Fischer, München, 1988. | MR | Zbl

[11] W. Zimmermann: Auslander-Reiten sequences over artinian rings. J.  Algebra 119 (1988), 366–92. | DOI | MR | Zbl

[12] W. Zimmermann: Auslander-Reiten sequences over derivation polynomial rings. J. Pure Appl. Algebra 74 (1991), 317–32. | DOI | MR | Zbl