Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 537-544 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a lower and an upper bound for the second smallest eigenvalue of Laplacian matrices in terms of the averaged minimal cut of weighted graphs. This is used to obtain an upper bound for the real parts of the non-maximal eigenvalues of irreducible nonnegative matrices. The result can be applied to Markov chains.
We present a lower and an upper bound for the second smallest eigenvalue of Laplacian matrices in terms of the averaged minimal cut of weighted graphs. This is used to obtain an upper bound for the real parts of the non-maximal eigenvalues of irreducible nonnegative matrices. The result can be applied to Markov chains.
Classification : 05C50, 15A42, 15A48, 60J10
Keywords: eigenvalue; irreducible nonnegative matrix; averaged minimal cut
@article{CMJ_2002_52_3_a7,
     author = {Zhang, Xiao-Dong and Luo, Rong},
     title = {Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {537--544},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923259},
     zbl = {1014.15013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a7/}
}
TY  - JOUR
AU  - Zhang, Xiao-Dong
AU  - Luo, Rong
TI  - Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 537
EP  - 544
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a7/
LA  - en
ID  - CMJ_2002_52_3_a7
ER  - 
%0 Journal Article
%A Zhang, Xiao-Dong
%A Luo, Rong
%T Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices
%J Czechoslovak Mathematical Journal
%D 2002
%P 537-544
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a7/
%G en
%F CMJ_2002_52_3_a7
Zhang, Xiao-Dong; Luo, Rong. Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 537-544. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a7/

[1] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York-San Francisco-London, 1979; SIAM, Philadelphia, 1994. | MR

[2] M. Fiedler: An estimate for the non-stochastic eigenvalues of doubly stochastic matrices. Linear Algebra Appl. 214 (1995), 133–143. | MR

[3] D. J. Hartfiel and C. D. Meyer: On the structure of stochastic matrices with a subordinant eigenvalue near  1. Linear Algebra Appl. 272 (1998), 193–203. | MR

[4] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and Applications. Academic Press, New York, 1979. | MR

[5] R. Merris: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197–198 (1994), 143–176. | MR | Zbl

[6] R. Merris: A survey of graph laplacians. Linear and Multilinear Algebra 39 (1995), 19–31. | MR | Zbl

[7] B. Mohar: Laplace eigenvalues of graphs—a survey. Discrete Math. 109 (1992), 171–183. | DOI | MR | Zbl

[8] H. Schneider: Note on the fundamental theorem on irreducible nonnegative matrices. Proc. Edinburgh Math. Soc. 12 (1960/1961), 107–112.