Keywords: Pettis integrability; HK-integrals; Saks-Henstock’s property
@article{CMJ_2002_52_3_a6,
author = {Fong, C. K.},
title = {A continous version of {Orlicz-Pettis} theorem via vector-valued {Henstock-Kurzweil} integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {531--536},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923258},
zbl = {1011.28006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/}
}
Fong, C. K. A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 531-536. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/
[1] R. G. Bartle: Return to the Riemann integral. Amer. Math. Monthly 103 (1996), 625–632. | DOI | MR | Zbl
[2] M. M. Day: Normed Linear Spaces. Academic Press Inc., New York, 1962. | MR | Zbl
[3] J. Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984. | MR
[4] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys, No. 15. Amer. Math. Soc., Providence, 1997. | MR
[5] R. Henstock: The General Theory of Integration. Clarendon Press, Oxford, 1991. | MR | Zbl
[6] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No. 109. Cambridge University Press, Cambridge, 1993. | MR
[7] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. | MR | Zbl
[8] Š. Schwabik: Abstract Bochner and McShane Integrals. Ann. Math. Sil. 1564(10) (1996), 21–56. | MR | Zbl