A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 531-536 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
Classification : 26A39, 28A75, 28B05, 28E50, 46G10
Keywords: Pettis integrability; HK-integrals; Saks-Henstock’s property
@article{CMJ_2002_52_3_a6,
     author = {Fong, C. K.},
     title = {A continous version of {Orlicz-Pettis} theorem via vector-valued {Henstock-Kurzweil} integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {531--536},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923258},
     zbl = {1011.28006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/}
}
TY  - JOUR
AU  - Fong, C. K.
TI  - A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 531
EP  - 536
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/
LA  - en
ID  - CMJ_2002_52_3_a6
ER  - 
%0 Journal Article
%A Fong, C. K.
%T A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
%J Czechoslovak Mathematical Journal
%D 2002
%P 531-536
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/
%G en
%F CMJ_2002_52_3_a6
Fong, C. K. A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 531-536. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a6/

[1] R. G.  Bartle: Return to the Riemann integral. Amer. Math. Monthly 103 (1996), 625–632. | DOI | MR | Zbl

[2] M. M.  Day: Normed Linear Spaces. Academic Press Inc., New York, 1962. | MR | Zbl

[3] J.  Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984. | MR

[4] J.  Diestel and J. J.  Uhl, Jr.: Vector Measures. Mathematical Surveys, No.  15. Amer. Math. Soc., Providence, 1997. | MR

[5] R. Henstock: The General Theory of Integration. Clarendon Press, Oxford, 1991. | MR | Zbl

[6] W. F.  Pfeffer: The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No.  109. Cambridge University Press, Cambridge, 1993. | MR

[7] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. | MR | Zbl

[8] Š.  Schwabik: Abstract Bochner and McShane Integrals. Ann. Math. Sil. 1564(10) (1996), 21–56. | MR | Zbl