Modular functions on multilattices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 499-512 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.
We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.
Classification : 06B99, 28B10
Keywords: multilattices; modular functions
@article{CMJ_2002_52_3_a4,
     author = {Avallone, Anna},
     title = {Modular functions on multilattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {499--512},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923256},
     zbl = {1011.28008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/}
}
TY  - JOUR
AU  - Avallone, Anna
TI  - Modular functions on multilattices
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 499
EP  - 512
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/
LA  - en
ID  - CMJ_2002_52_3_a4
ER  - 
%0 Journal Article
%A Avallone, Anna
%T Modular functions on multilattices
%J Czechoslovak Mathematical Journal
%D 2002
%P 499-512
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/
%G en
%F CMJ_2002_52_3_a4
Avallone, Anna. Modular functions on multilattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 499-512. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/

[1] A. Avallone: Liapunov theorem for modular functions. Internat. J.  Theoret. Phys. 34 (1995), 1197–1204. | DOI | MR | Zbl

[2] A. Avallone: Nonatomic vector-valued modular functions. Annal. Soc. Math. Polon. Series I: Comment. Math. XXXIX (1999), 37–50. | MR | Zbl

[3] A.  Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 43 (1999), . | MR

[4] A.  Avallone and A.  De  Simone: Extensions of modular functions on orthomodular lattices. Italian J. Pure Appl. Math, To appear. | MR

[5] A.  Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo XLVII (1998), 221–264. | MR

[6] A.  Avallone and J. Hamhalter: Extension theorems (vector measures on quantum logics). Czechoslovak Math. J.  46 (121) (1996), 179–192. | MR

[7] A.  Avallone and H. Weber: Lattice uniformities generated by filters. J.  Math. Anal. Appl. 209 (1997), 507–528. | DOI | MR

[8] G. Barbieri and H.  Weber: A topological approach to the study of fuzzy measures. Funct. Anal. Econom. Theory, Springer, 1998, pp. 17–46. | MR

[9] G. Barbieri, M. A. Lepellere and H. Weber: The Hahn decomposition theorem and applications. Fuzzy Sets Systems 118 (2001), 519–528. | MR

[10] H. J. Bandelt, M.  Van  de  Vel and E.  Verheul: Modular interval spaces. Math. Nachr. 163 (1993), 177–201. | DOI | MR

[11] M. Benado: Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II. Czechoslovak Math.  J. 5 (1955), 308–344. | MR

[12] G. Birkhoff: Lattice Theory, Third edition. AMS Providence, R.I., 1967. | MR

[13] I. Fleischer and T.  Traynor: Equivalence of group-valued measure on an abstract lattice. Bull. Acad. Pol. Sci. 28 (1980), 549–556. | MR

[14] I. Fleischer and T.  Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287–291. | DOI | MR

[15] M. G. Graziano: Uniformities of Fréchet-Nikodým type on Vitali spaces. Semigroup Forum 61 (2000), 91–115. | DOI | MR | Zbl

[16] D. J. Hensen: An axiomatic characterization of multilattices. Discrete Math. 33 (1981), 99–101. | DOI | MR

[17] J. Jakubík: Sur les axiomes des multistructures. Czechoslovak Math.  J. 6 (1956), 426–430. | MR

[18] J. Jakubík and M.  Kolibiar: Isometries of multilattice groups. Czechoslovak Math.  J. 33 (1983), 602–612. | MR

[19] J. Lihová: Valuations and distance function on directed multilattices. Math. Slovaca 46 (1996), 143–155. | MR

[20] J.  Lihová and K. Repasky: Congruence relations on and varieties of directed multilattices. Math. Slovaca 38 (1988), 105–122. | MR

[21] T. Traynor: Modular functions and their Fréchet-Nikodým topologies. Lectures Notes in  Math. 1089 (1984), 171–180. | DOI | MR | Zbl

[22] H. Weber: Uniform Lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II. Ann. Mat. Pura Appl. 160 (1991), 347–370. | DOI | MR

[23] H. Weber: Lattice uniformities and modular functions on orthomodular lattices. Order 12 (1995), 295–305. | DOI | MR | Zbl

[24] H. Weber: On modular functions. Funct. Approx. XXIV (1996), 35–52. | MR | Zbl

[25] H. Weber: Valuations on complemented lattices. Internat. J.  Theoret. Phys. 34 (1995), 1799–1806. | DOI | MR | Zbl

[26] H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47–64. | DOI | MR | Zbl

[27] H. Weber: Two extension theorems. Modular functions on complemented lattices. Preprint. | MR | Zbl