Modular functions on multilattices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 499-512
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.
We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$.
@article{CMJ_2002_52_3_a4,
author = {Avallone, Anna},
title = {Modular functions on multilattices},
journal = {Czechoslovak Mathematical Journal},
pages = {499--512},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923256},
zbl = {1011.28008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/}
}
Avallone, Anna. Modular functions on multilattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 499-512. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a4/