Keywords: normal families; best $L_p$-approximation
@article{CMJ_2002_52_3_a3,
author = {Kovacheva, R. K. and Lawrynowicz, J.},
title = {An analogue of {Montel{\textquoteright}s} theorem for some classes of rational functions},
journal = {Czechoslovak Mathematical Journal},
pages = {483--498},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923255},
zbl = {1011.30001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a3/}
}
TY - JOUR AU - Kovacheva, R. K. AU - Lawrynowicz, J. TI - An analogue of Montel’s theorem for some classes of rational functions JO - Czechoslovak Mathematical Journal PY - 2002 SP - 483 EP - 498 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a3/ LA - en ID - CMJ_2002_52_3_a3 ER -
Kovacheva, R. K.; Lawrynowicz, J. An analogue of Montel’s theorem for some classes of rational functions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 483-498. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a3/
[1] S. N. Bernstein: On the distribution of zeros of polynomials to a continuous function positive on a real interval. Complex Works, Vol. I, Acad. Nauk UdSSR, 1952, pp. 443–451. (Russian)
[2] G. Baker, Jr., and P. Graves-Morris: Padé Approximants. Encyclopedia of Mathematics and Its Applications, Part I, Volume 13, 14. Addison-Wesley Publishing Company, Massachusetts, 1981.
[3] H.-P. Blatt, E. B. Saff and M. Simkani: Jentzsch-Szegő type theorems for the zeros of best approximants. J. London Math. Soc. 38 (1988), 307–316. | MR
[4] H.-P. Blatt, P. Isenles and E. B. Saff: Remarks on behavior of zeros of polynomials of best approximating polynomials and rational functions. Algorithmus for Approximation, J. C. Mason, U. C. Cox (eds.), Inst. Math. Conf. Ser., New Ser. 10, Oxford Press, Oxford, 1987, pp. 437–445.
[5] D. Braess: On a conjecture of Meinardus on rational approximation of $e^x$, II. J. Approx. Theory 40 (1984), 375–379. | DOI | MR
[6] J. Gilewicz and W. Pleśniak: Distribution of zeros of sequences of polynomials. Ann. Polon. Math 30 (1993), 165–177. | MR
[7] G. M. Golusin: Geometric Theory of Functions of a Complex Variable. Nauka, Moscow, 1966. (Russian)
[8] A. A. Gonchar: On uniform convergence of diagonal Padé approximant.
[9] A. A. Gonchar: A local conjecture for the uniqueness of analytic functions. Matem. Sbornik 89 (1972), 148–164. (Russian)
[10] H. Gonska and R. K. Kovacheva: An extension of Montel’s theorems to some rational approximating sequences. Bull. Soc. Lettres Lodz 21 (1996), 73–86. | MR
[11] R. Grothmann and E. B. Saff: On the behavior of zeros and poles of best uniform polynomial and rational approximation. Nonlinear Numerical Methods and Rational Approximations, D. Reidel Publ. Co., Dordrecht, 1988, pp. 57–77. | MR
[12] R. K. Kovacheva: On the behaviour of Chebyshev rational approximants with a fixed number of poles. Math. Balkanica 3 (1989), 244–256. | MR
[13] R. K. Kovacheva: Diagonal rational Chebyshev approximants and holomorphic continuation of functions. Analysis 10 (1990), 147–161. | DOI | MR | Zbl
[14] R. K. Kovacheva: An analogue of Montel’s theorem to rational approximating sequences. Comp. Ren. Acad. Bulg. Scien. 50 (1997), 9–12. | MR | Zbl
[15] A. Kroo and J. Swetits: On density of interpolation points, a Kadec type theorem and Saff’s principle of contamination in $L_p$-approximation. Constr. Approx. 8 (1992), 87–103. | DOI | MR
[16] I. P. Natanson: The Theory of Analytic Functions. Nauka, Moscow, 1950. (Russian)
[17] I. I. Privalov: Boundary Oroperties of Analytic Functions. Nauka, Moscow, 1950. (Russian)
[18] E. B. Saff and H. Stahl: Ray sequences of best rational approximants for $|x|^{\alpha }$. Canad. J. Math. 49 (1997), 1034–1065. | DOI | MR
[19] H. Stahl: Best uniform rational approximation of $|x|$ on $[-1, 1]$. Mat. Sb. 8 (1983), 85–118. | MR
[20] A. F. Timan: Approximation of Real-Vaued Functions. GIFMAT, 1960. (Russian)
[21] J. L. Walsh: Interpolation and approximation by rational functions in the complex plane. AMS Colloquium Publications, Volume XX, 1960.
[22] J. L. Walsh: Overconvergence, degree of convergence and zeros of sequences of analytic functions. Duke Math. J. 13 (1946), 195–235. | MR | Zbl