Keywords: Specker lattice ordered group; generalized Boolean algebra; torsion class
@article{CMJ_2002_52_3_a2,
author = {Jakub{\'\i}k, J\'an},
title = {Torsion classes of {Specker} lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {469--482},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923254},
zbl = {1012.06018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/}
}
Jakubík, Ján. Torsion classes of Specker lattice ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 469-482. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[3] P. Conrad and M. R. Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. | DOI | MR
[4] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | DOI | MR
[5] P. F. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395–413. | DOI | MR
[6] P. F. Conrad and D. McAlister: The completion of an $\ell $-group. J. Austral. Math. Soc. 9 (1969), 182–208. | MR
[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups. Algebra Universalis 29 (1992), 521–545. | DOI | MR
[8] C. Gofman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. | MR
[9] J. Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85–98. | DOI | MR
[10] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21, Academic Press, New York-London, 1977, pp. 451–477. | MR
[11] J. Jakubík: Radical classes of generalized Boolean algebras. Czechoslovak Math. J. 48 (1998), 253–268. | DOI | MR
[12] J. Jakubík: Radical classes of complete lattice ordered groups. Math. Slovaca 49 (1999), 417–424. | MR
[13] J. Martinez: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25 (1975), 284–299. | MR | Zbl