Torsion classes of Specker lattice ordered groups
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 469-482 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.
In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.
Classification : 06E99, 06F15, 20F60
Keywords: Specker lattice ordered group; generalized Boolean algebra; torsion class
@article{CMJ_2002_52_3_a2,
     author = {Jakub{\'\i}k, J\'an},
     title = {Torsion classes of {Specker} lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {469--482},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923254},
     zbl = {1012.06018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Torsion classes of Specker lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 469
EP  - 482
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/
LA  - en
ID  - CMJ_2002_52_3_a2
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Torsion classes of Specker lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2002
%P 469-482
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/
%G en
%F CMJ_2002_52_3_a2
Jakubík, Ján. Torsion classes of Specker lattice ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 469-482. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a2/

[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl

[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[3] P. Conrad and M. R. Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. | DOI | MR

[4] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | DOI | MR

[5] P. F. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395–413. | DOI | MR

[6] P. F. Conrad and D. McAlister: The completion of an $\ell $-group. J. Austral. Math. Soc. 9 (1969), 182–208. | MR

[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups. Algebra Universalis 29 (1992), 521–545. | DOI | MR

[8] C. Gofman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. | MR

[9] J. Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85–98. | DOI | MR

[10] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21, Academic Press, New York-London, 1977, pp. 451–477. | MR

[11] J. Jakubík: Radical classes of generalized Boolean algebras. Czechoslovak Math. J. 48 (1998), 253–268. | DOI | MR

[12] J. Jakubík: Radical classes of complete lattice ordered groups. Math. Slovaca 49 (1999), 417–424. | MR

[13] J. Martinez: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25 (1975), 284–299. | MR | Zbl