Keywords: asymptotic behavior; higher order differential equation
@article{CMJ_2002_52_3_a18,
author = {Lin, C. S.},
title = {Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation},
journal = {Czechoslovak Mathematical Journal},
pages = {665--672},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923270},
zbl = {1023.34032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/}
}
Lin, C. S. Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 665-672. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/
[1] M. Biernacki: Sur l’equation differentielle $y^{(4)} + A(x)y = 0$. Ann. Univ. Mariae Curie-Skłodowska 6 (1952), 65–78. | MR
[2] S. P. Hastings and A. C. Lazer: On the asymptotic behavior of solutions of the differential equation $y^{(4)} = p(x)y$. Czechoslovak Math. J. 18(93) (1968), 224–229. | MR
[3] G. D. Jones: Asymptotic behavior of solutions of a fourth order linear differential equation. Czechoslovak Math. J. 38(113) (1988), 578–584. | MR | Zbl
[4] G. D. Jones: Oscillatory solutions of a fourth order linear differential equation. Lecture notes in pure and apllied Math. Vol 127, 1991, pp. 261–266. | MR
[5] M. K. Kwong and A. Zettl: Norm Inequalities for Derivatives and Differences. Lecture notes in Mathematics, 1536. Springer-Verlag, Berlin, 1992. | MR
[6] M. Švec: Sur le comportement asymtotique des intégrales de l’équation differentielle $y^{(4)} + Q(x)y = 0$. Czechoslovak Math. J. 8(83) (1958), 230–245. | MR