Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 665-672 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove two results. The first is an extension of the result of G. D. Jones [4]: (A) Every nontrivial solution for \[ \left\rbrace \begin{array}{ll}(-1)^n u^{(2n)} + f(t,u) = 0,\hspace{5.0pt}\text{in} \hspace{5.0pt}(\alpha , \infty ), u^{(i)}(\xi ) = 0, \quad i = 0,1,\dots , n-1, \hspace{5.0pt} \text{and} \hspace{5.0pt}\xi \in (\alpha , \infty ), \end{array}\right.\] must be unbounded, provided $f(t,z)z\ge 0$, in $E \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $E \times I$. (B) Every bounded solution for $(-1)^n u^{(2n)} + f(t,u) = 0$, in $\mathbb R$, must be constant, provided $f(t,z)z\ge 0$ in $\mathbb R \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $\mathbb R \times I$.
In this paper we prove two results. The first is an extension of the result of G. D. Jones [4]: (A) Every nontrivial solution for \[ \left\rbrace \begin{array}{ll}(-1)^n u^{(2n)} + f(t,u) = 0,\hspace{5.0pt}\text{in} \hspace{5.0pt}(\alpha , \infty ), u^{(i)}(\xi ) = 0, \quad i = 0,1,\dots , n-1, \hspace{5.0pt} \text{and} \hspace{5.0pt}\xi \in (\alpha , \infty ), \end{array}\right.\] must be unbounded, provided $f(t,z)z\ge 0$, in $E \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $E \times I$. (B) Every bounded solution for $(-1)^n u^{(2n)} + f(t,u) = 0$, in $\mathbb R$, must be constant, provided $f(t,z)z\ge 0$ in $\mathbb R \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $\mathbb R \times I$.
Classification : 34C10, 34C11, 34D05
Keywords: asymptotic behavior; higher order differential equation
@article{CMJ_2002_52_3_a18,
     author = {Lin, C. S.},
     title = {Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {665--672},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923270},
     zbl = {1023.34032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/}
}
TY  - JOUR
AU  - Lin, C. S.
TI  - Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 665
EP  - 672
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/
LA  - en
ID  - CMJ_2002_52_3_a18
ER  - 
%0 Journal Article
%A Lin, C. S.
%T Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation
%J Czechoslovak Mathematical Journal
%D 2002
%P 665-672
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/
%G en
%F CMJ_2002_52_3_a18
Lin, C. S. Asymptotic behavior of solutions of a $2n^{th}$ order nonlinear differential equation. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 665-672. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a18/