On intervals and isometries of $MV$-algebras
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 651-663 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively.
Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively.
Classification : 06D35
Keywords: $MV$-algebra; duality; interval; autometrization; 2-periodic isometry
@article{CMJ_2002_52_3_a17,
     author = {Jakub{\'\i}k, J\'an},
     title = {On intervals and isometries of $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {651--663},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923269},
     zbl = {1012.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On intervals and isometries of $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 651
EP  - 663
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/
LA  - en
ID  - CMJ_2002_52_3_a17
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On intervals and isometries of $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2002
%P 651-663
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/
%G en
%F CMJ_2002_52_3_a17
Jakubík, Ján. On intervals and isometries of $MV$-algebras. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 651-663. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/

[1] G.  Birkhoff: Lattice Theory. AMS Colloquium Publications. Vol. XXV, Providence, RI, 1967. | MR | Zbl

[2] G.  Cattaneo and F.  Lombardo: Independent axiomatization of $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232. | MR

[3] C. C.  Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl

[4] P.  Conrad: Lattice Ordered Groups. Tulane University, New Orleans, 1970. | Zbl

[5] D.  Glushankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739.

[6] Ch.  Holland: Intrinsic metrics for lattice ordered groups. Algebra Universalis 19 (1984), 142–150. | DOI | MR | Zbl

[7] J.  Jakubík: Isometries of lattice ordered groups. Czechoslovak Math.  J. 30(105) (1980), 142–152. | MR

[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739. | MR

[9] J.  Jakubík and M.  Kolibiar: On some properties of pairs of lattices. Czechoslovak Math.  J. 4(79) (1954), 1–27. (Russian) | MR

[10] M.  Jasem: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119–136. | MR | Zbl

[11] J.  Lihová: Posets having a selfdual interval poset. Czechoslovak Math.  J. 44(119) (1994), 523–533. | MR

[12] P.  Mangani: On certain algebras related to many-valued logics. Boll. Un. Mat. Ital. 8 (1973), 68–78. (Italian)

[13] D.  Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. | DOI | MR

[14] W. B.  Powell: On isometries in abelian lattice ordered groups. J.  Indian Math. Soc. 46 (1982), 189–194. | MR

[15] J.  Rachůnek: Isometries in ordered groups. Czechoslovak Math.  J. 34(109) (1984), 334–341. | MR

[16] K. L.  Swamy: Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1977), 58–64. | MR | Zbl

[17] K. L.  Swamy: Isometries in autometrized lattice ordered groups  II. Math. Seminar Notes, Kobe Univ. 5 (1977), 211–214. | MR | Zbl