On intervals and isometries of $MV$-algebras
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 651-663
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively.
Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively.
Classification :
06D35
Keywords: $MV$-algebra; duality; interval; autometrization; 2-periodic isometry
Keywords: $MV$-algebra; duality; interval; autometrization; 2-periodic isometry
@article{CMJ_2002_52_3_a17,
author = {Jakub{\'\i}k, J\'an},
title = {On intervals and isometries of $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {651--663},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923269},
zbl = {1012.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/}
}
Jakubík, Ján. On intervals and isometries of $MV$-algebras. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 651-663. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a17/