Keywords: single-valued extension property; Dunford’s property $\mathrm (C)$; decomposable operators
@article{CMJ_2002_52_3_a15,
author = {Miller, T. L. and Neumann, M. M.},
title = {The single-valued extension property for sums and products of commuting operators},
journal = {Czechoslovak Mathematical Journal},
pages = {635--642},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923267},
zbl = {1075.47500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a15/}
}
TY - JOUR AU - Miller, T. L. AU - Neumann, M. M. TI - The single-valued extension property for sums and products of commuting operators JO - Czechoslovak Mathematical Journal PY - 2002 SP - 635 EP - 642 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a15/ LA - en ID - CMJ_2002_52_3_a15 ER -
Miller, T. L.; Neumann, M. M. The single-valued extension property for sums and products of commuting operators. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 635-642. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a15/
[1] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory. Proc. London Math. Soc. 75 (1997), 323–348. | MR
[2] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators. In: Advances in Invariant Subspaces and Other Results of Operator Theory. Operator Theory: Advances and Applications, Vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. | MR
[3] C. Apostol: Decomposable multiplication operators. Rev. Roumaine Math. Pures Appl. 17 (1972), 323–333. | MR | Zbl
[4] B. Aupetit and D. Drissi: Local spectrum and subharmonicity. In: Proc. Edinburgh Math. Soc. Vol. 39, 1996, pp. 571–579. | MR
[5] I. Colojoară and C. Foiaş: Theory of Generalized Spectral Operators. Gordon and Breach, New York, 1968. | MR
[6] J. Eschmeier: Spectral decompositions and decomposable multipliers. Manuscripta Math. 51 (1985), 201–224. | DOI | MR | Zbl
[7] J. Eschmeier, K. B. Laursen and M. M. Neumann: Multipliers with natural local spectra on commutative Banach algebras. J. Funct. Analysis 138 (1996), 273–294. | MR
[8] R. Kantrowitz and M. M. Neumann: On certain Banach algebras of vector-valued functions. In: Function spaces, the second conference. Lecture Notes in Pure and Applied Math. Vol. 172, Marcel Dekker, New York, 1995, pp. 223–242. | MR
[9] R. Lange and S. Wang: New Approaches in Spectral Decomposition. Contemp. Math. 128. Amer. Math. Soc., Providence, RI, 1992. | MR
[10] K. B. Laursen and M. M. Neumann: Asymptotic intertwining and spectral inclusions on Banach spaces. Czechoslovak Math. J. 43(118) (1993), 483–497. | MR
[11] T. L. Miller and V. G. Miller: An operator satisfying Dunford’s condition $\mathrm (C)$ but without Bishop’s property $(\text{b})$. Glasgow Math. J. 40 (1998), 427–430. | DOI | MR
[12] M. M. Neumann: On local spectral properties of operators on Banach spaces. Rend. Circ. Mat. Palermo (2), Suppl. 56 (1998), 15–25. | MR | Zbl
[13] S. L. Sun: The sum and product of decomposable operators. Northeast. Math. J. 5 (1989), 105–117. (Chinese) | MR | Zbl
[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions. Editura Academiei and D. Reidel Publ. Company, Bucharest and Dordrecht, 1982. | MR | Zbl
[15] P. Vrbová: On local spectral properties of operators in Banach spaces. Czechoslovak Math. J. 23(98) (1973), 483–492. | MR