Primary elements in Prüfer lattices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 585-593 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.
In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.
Classification : 06F05, 06F10, 06F99, 13A15
Keywords: principal element; primary element; Prüfer lattice
@article{CMJ_2002_52_3_a12,
     author = {Jayaram, C.},
     title = {Primary elements in {Pr\"ufer} lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {585--593},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923264},
     zbl = {1012.06017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a12/}
}
TY  - JOUR
AU  - Jayaram, C.
TI  - Primary elements in Prüfer lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 585
EP  - 593
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a12/
LA  - en
ID  - CMJ_2002_52_3_a12
ER  - 
%0 Journal Article
%A Jayaram, C.
%T Primary elements in Prüfer lattices
%J Czechoslovak Mathematical Journal
%D 2002
%P 585-593
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a12/
%G en
%F CMJ_2002_52_3_a12
Jayaram, C. Primary elements in Prüfer lattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 585-593. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a12/

[1] D. D.  Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl

[2] D. D.  Anderson, J. Matijevic and W. Nichols: The Krull intersection theorem  II. Pacific J. Math. 66 (1976), 15–22. | DOI | MR

[3] D. D.  Anderson, C.  Jayaram and P. A.  Phiri: Bear lattices. Acta. Sci. Math. (Szeged) 59 (1994), 61–74. | MR

[4] D. D.  Anderson and E. W. Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. | DOI | MR

[5] D. D.  Anderson and C.  Jayaram: Principal element lattices. Czechoslovak Math.  J. 46(121) (1996), 99–109. | MR

[6] H. S.  Butts and W.  Smith: Prüfer rings. Math. Z. 95 (1967), 196–211. | MR

[7] R. P.  Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. | DOI | MR | Zbl

[8] C.  Jayaram and E. W.  Johnson: Almost principal element lattices. Internat. J. Math. Math. Sci. 18 (1995), 535–538. | DOI | MR

[9] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. | DOI | MR

[10] C.  Jayaram and E. W.  Johnson: Some results on almost principal element lattices. Period. Math. Hungar. 31 (1995), 33–42. | DOI | MR

[11] C.  Jayaram and E. W.  Johnson: Primary elements and prime power elements in multiplicative lattices. Tamkang J. Math. 27 (1996), 111–116. | MR

[12] C.  Jayaram and E. W.  Johnson: Dedekind lattices. Acta. Sci. Math. (Szeged) 63 (1997), 367–378. | MR

[13] C.  Jayaram and E. W.  Johnson: $\sigma $-elements in multiplicative lattices. Czechoslovak Math.  J. 48(123) (1998), 641–651. | DOI | MR

[14] E. W.  Johnson and J. P. Lediaev: Representable distributive Noether lattices. Pacific J. Math. 28 (1969), 561–564. | DOI | MR

[15] P. J.  McCarthy: Arithmetical rings and multiplicative lattices. Ann. Math. Pura. Appl. 82 (1969), 267–274. | DOI | MR | Zbl