Keywords: singular measures; convolution operators
@article{CMJ_2002_52_3_a11,
author = {Ferreyra, E. and Godoy, T. and Urciuolo, M.},
title = {The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support},
journal = {Czechoslovak Mathematical Journal},
pages = {575--583},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923263},
zbl = {1012.42012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/}
}
TY - JOUR
AU - Ferreyra, E.
AU - Godoy, T.
AU - Urciuolo, M.
TI - The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
JO - Czechoslovak Mathematical Journal
PY - 2002
SP - 575
EP - 583
VL - 52
IS - 3
UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/
LA - en
ID - CMJ_2002_52_3_a11
ER -
Ferreyra, E.; Godoy, T.; Urciuolo, M. The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 575-583. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/
[1] M. Christ: Endpoint bounds for singular fractional integral operators. UCLA Preprint (1988). | MR
[2] S. W. Drury and K. Guo: Convolution estimates related to surfaces of half the ambient dimension. Math. Proc. Camb. Phil. Soc. 110 (1991), 151–159. | DOI | MR
[3] E. Ferreyra, T. Godoy and M. Urciuolo: Convolution operators with fractional measures associated to holomorphic functions. Acta Math. Hungar 92 (2001), 27–38. | DOI | MR
[4] D. Oberlin: Convolution estimates for some measures on curves. Proc. Amer. Math. Soc. 99 (1987), 56–60. | DOI | MR | Zbl
[5] F. Ricci: Limitatezza $L^p$-$L^q$ per operatori di convoluzione definiti da misure singolari in $R^n$. Bollettino U.M.I. 7 11-A (1997), 237–252.
[6] S. Secco: Fractional integration along homogeneous curves in $R^3$. Math. Scand. 85 (1999), 259–270. | DOI | MR
[7] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. | MR | Zbl
[8] E. M. Stein: Harmonic Analysis. Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, 1993. | MR | Zbl