The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 575-583
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb R^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb R^{2n}$ given by \[ \mu (E) =\int _{\mathbb R^n}\chi _E(x,\varphi (x))\, |x|^{\gamma -n}\mathrm{d}x \] where $\mathrm{d}x$ denotes the Lebesgue measure on $\mathbb R^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E_\mu =\lbrace (1/p,1/q)\:\Vert T_\mu \Vert _{p,q}\infty ,\hspace{5.0pt}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det ({\mathrm d}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det ({\mathrm d} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac{\gamma }{n(k+1)},1-\frac{2\gamma }{n(k+1)}\bigr )$ and $D^{\prime }=\bigl (\frac{2\gamma }{n(1+k)},\frac{\gamma }{n(1+k)}\bigr )$. Also, we give some examples.
Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb R^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb R^{2n}$ given by \[ \mu (E) =\int _{\mathbb R^n}\chi _E(x,\varphi (x))\, |x|^{\gamma -n}\mathrm{d}x \] where $\mathrm{d}x$ denotes the Lebesgue measure on $\mathbb R^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E_\mu =\lbrace (1/p,1/q)\:\Vert T_\mu \Vert _{p,q}\infty ,\hspace{5.0pt}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det ({\mathrm d}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det ({\mathrm d} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac{\gamma }{n(k+1)},1-\frac{2\gamma }{n(k+1)}\bigr )$ and $D^{\prime }=\bigl (\frac{2\gamma }{n(1+k)},\frac{\gamma }{n(1+k)}\bigr )$. Also, we give some examples.
Classification :
28C10, 42B15, 42B20, 47B38
Keywords: singular measures; convolution operators
Keywords: singular measures; convolution operators
@article{CMJ_2002_52_3_a11,
author = {Ferreyra, E. and Godoy, T. and Urciuolo, M.},
title = {The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support},
journal = {Czechoslovak Mathematical Journal},
pages = {575--583},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923263},
zbl = {1012.42012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/}
}
TY - JOUR
AU - Ferreyra, E.
AU - Godoy, T.
AU - Urciuolo, M.
TI - The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
JO - Czechoslovak Mathematical Journal
PY - 2002
SP - 575
EP - 583
VL - 52
IS - 3
UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/
LA - en
ID - CMJ_2002_52_3_a11
ER -
Ferreyra, E.; Godoy, T.; Urciuolo, M. The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 575-583. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a11/