Keywords: regularities; Fredholm theory; inessential ideal
@article{CMJ_2002_52_3_a10,
author = {Lindeboom, L. and Raubenheimer, H.},
title = {On regularities and {Fredholm} theory},
journal = {Czechoslovak Mathematical Journal},
pages = {565--574},
year = {2002},
volume = {52},
number = {3},
mrnumber = {1923262},
zbl = {1010.46045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/}
}
Lindeboom, L.; Raubenheimer, H. On regularities and Fredholm theory. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 565-574. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/
[1] B. Aupetit: A Primer on Spectral Theory. Springer-Verlag, , 1991. | MR | Zbl
[2] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West: Riesz and Fredholm Theory in Banach Algebras. Pitman, Boston-London-Melbourne, 1982. | MR
[3] P. G. Dixon: Spectra of left approximate identities in Banach algebras. Bull. London Math. Soc. 19 (1987), 169–173. | DOI | MR | Zbl
[4] J. J. Grobler and H. Raubenheimer: Spectral properties of elements in different Banach algebras. Glasgow Math. J. 33 (1991), 11–20. | DOI | MR
[5] R. E. Harte: The exponential spectrum in Banach algebras. Proc. Amer. Math. Soc. 58 (1976), 114–118. | DOI | MR | Zbl
[6] R. E. Harte: Fredholm theory relative to a Banach algebra homomorphism. Math. Z. 179 (1982), 431–436. | DOI | MR | Zbl
[7] R. E. Harte: Fredholm, Weyl and Browder theory. Proc. Royal Irish Academy Vol. 85A, 1985, pp. 151–176. | MR | Zbl
[8] R. E. Harte: Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York-Basel, 1988. | MR | Zbl
[9] R. E. Harte: On rank one elements. Studia Math. 117 (1995), 73–77. | DOI | MR | Zbl
[10] R. E. Harte and H. Raubenheimer: Fredholm, Weyl and Browder theory III. Proc. Royal Irish Academy Vol. 95A, 1995, pp. 11–16. | MR
[11] R. E. Harte and A. W. Wickstead: Boundaries, hulls and spectral mapping theorems. Proceedings of the Royal Irish Academy Vol 81A, 1981, pp. 201–208. | MR
[12] V. Kordula and V. Müller: Axiomatic theory of spectrum. Studia Math. 119 (1996), 109–128. | MR
[13] L. Lindeboom and H. Raubenheimer: A note on the singular spectrum. Extracta Math. 13 (1998), 349–357. | MR
[14] A. Lebow and M. Schechter: Semigroups of operators and measures of noncompactness. J. Funct. Anal. 7 (1971), 1–26. | DOI | MR
[15] M. Mbekhta and V. Müller: On axiomatic theory of spectrum II. Studia Math. 119 (1996), 129–147. | DOI | MR
[16] H. du T. Mouton: On inessential ideals in Banach algebras. Quaestiones Mathematicae 17 (1994), 59–66. | DOI | MR | Zbl
[17] T. Mouton and H. Raubenheimer: More Fredholm theory relative to a Banach algebra homomorphism. Proceedings of the Royal Irish Academy Vol. 93A, 1993, pp. 17–25. | MR
[18] T. Mouton and H. Raubenheimer: On rank one and finite elements in Banach algebras. Studia Math. 104 (1993), 211–219. | DOI | MR
[19] J. Puhl: The trace of finite and nuclear elements in Banach algebras. Czechoslovak Math. J. 28(103) (1978), 656–676. | MR | Zbl
[20] M. R. F. Smyth: Riesz theory in Banach algebras. Math. Z. 145 (1975), 145–155. | DOI | MR | Zbl
[21] A. E. Taylor and D. C. Lay: Introduction to Functional Analysis. 2nd ed. John Wiley, New York, 1980. | MR
[22] W. .Zelazko: Axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249–261. | DOI | MR | Zbl