On regularities and Fredholm theory
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 565-574 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the relationship between the regularities and the Fredholm theory in a Banach algebra.
We investigate the relationship between the regularities and the Fredholm theory in a Banach algebra.
Classification : 46H05, 46H10, 47A53
Keywords: regularities; Fredholm theory; inessential ideal
@article{CMJ_2002_52_3_a10,
     author = {Lindeboom, L. and Raubenheimer, H.},
     title = {On regularities and {Fredholm} theory},
     journal = {Czechoslovak Mathematical Journal},
     pages = {565--574},
     year = {2002},
     volume = {52},
     number = {3},
     mrnumber = {1923262},
     zbl = {1010.46045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/}
}
TY  - JOUR
AU  - Lindeboom, L.
AU  - Raubenheimer, H.
TI  - On regularities and Fredholm theory
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 565
EP  - 574
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/
LA  - en
ID  - CMJ_2002_52_3_a10
ER  - 
%0 Journal Article
%A Lindeboom, L.
%A Raubenheimer, H.
%T On regularities and Fredholm theory
%J Czechoslovak Mathematical Journal
%D 2002
%P 565-574
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/
%G en
%F CMJ_2002_52_3_a10
Lindeboom, L.; Raubenheimer, H. On regularities and Fredholm theory. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 565-574. http://geodesic.mathdoc.fr/item/CMJ_2002_52_3_a10/

[1] B. Aupetit: A Primer on Spectral Theory. Springer-Verlag, , 1991. | MR | Zbl

[2] B. A. Barnes, G. J.  Murphy, M. R. F. Smyth and T. T.  West: Riesz and Fredholm Theory in Banach Algebras. Pitman, Boston-London-Melbourne, 1982. | MR

[3] P. G. Dixon: Spectra of left approximate identities in Banach algebras. Bull. London Math. Soc. 19 (1987), 169–173. | DOI | MR | Zbl

[4] J. J. Grobler and H.  Raubenheimer: Spectral properties of elements in different Banach algebras. Glasgow Math.  J. 33 (1991), 11–20. | DOI | MR

[5] R. E.  Harte: The exponential spectrum in Banach algebras. Proc. Amer. Math. Soc. 58 (1976), 114–118. | DOI | MR | Zbl

[6] R. E. Harte: Fredholm theory relative to a Banach algebra homomorphism. Math.  Z. 179 (1982), 431–436. | DOI | MR | Zbl

[7] R. E. Harte: Fredholm, Weyl and Browder theory. Proc. Royal Irish Academy Vol.  85A, 1985, pp. 151–176. | MR | Zbl

[8] R. E.  Harte: Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York-Basel, 1988. | MR | Zbl

[9] R. E.  Harte: On rank one elements. Studia Math. 117 (1995), 73–77. | DOI | MR | Zbl

[10] R. E. Harte and H.  Raubenheimer: Fredholm, Weyl and Browder theory III. Proc. Royal Irish Academy Vol.  95A, 1995, pp. 11–16. | MR

[11] R. E.  Harte and A. W. Wickstead: Boundaries, hulls and spectral mapping theorems. Proceedings of the Royal Irish Academy Vol 81A, 1981, pp. 201–208. | MR

[12] V.  Kordula and V.  Müller: Axiomatic theory of spectrum. Studia Math. 119 (1996), 109–128. | MR

[13] L.  Lindeboom and H. Raubenheimer: A note on the singular spectrum. Extracta Math. 13 (1998), 349–357. | MR

[14] A.  Lebow and M.  Schechter: Semigroups of operators and measures of noncompactness. J.  Funct. Anal. 7 (1971), 1–26. | DOI | MR

[15] M.  Mbekhta and V.  Müller: On axiomatic theory of spectrum II. Studia Math. 119 (1996), 129–147. | DOI | MR

[16] H. du T.  Mouton: On inessential ideals in Banach algebras. Quaestiones Mathematicae 17 (1994), 59–66. | DOI | MR | Zbl

[17] T.  Mouton and H.  Raubenheimer: More Fredholm theory relative to a Banach algebra homomorphism. Proceedings of the Royal Irish Academy Vol. 93A, 1993, pp. 17–25. | MR

[18] T.  Mouton and H.  Raubenheimer: On rank one and finite elements in Banach algebras. Studia Math. 104 (1993), 211–219. | DOI | MR

[19] J.  Puhl: The trace of finite and nuclear elements in Banach algebras. Czechoslovak Math. J. 28(103) (1978), 656–676. | MR | Zbl

[20] M. R. F.  Smyth: Riesz theory in Banach algebras. Math.  Z. 145 (1975), 145–155. | DOI | MR | Zbl

[21] A. E.  Taylor and D. C.  Lay: Introduction to Functional Analysis. 2nd ed. John Wiley, New York, 1980. | MR

[22] W. .Zelazko: Axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249–261. | DOI | MR | Zbl